Molecular Breeding

, Volume 14, Issue 3, pp 275–282

Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter

  • Sunghun Park
  • Chang-Kil Kim
  • Leonard M. Pike
  • Roberta H. Smith
  • Kendal D. Hirschi
Article

Abstract

We demonstrate that carrots expressing the Arabidopsis H+/Ca2+ transporter CAX1 (Cation Exchanger 1) contained up to 50% more calcium (Ca) than plants transformed with control vectors. The CAX1-expressing carrots were fertile, and robust plant growth was seen in the majority of the transgenic plants. CAX1-expressing carrots were crossed to a commercial carrot variety to confirm that the increased Ca accumulation was mediated by CAX1-expression, and the increased Ca content was clearly correlated with the transgene. This study suggests that modulation of ion transporters could be an important means of increasing the Ca content of agriculturally important crops. To our knowledge, this study represents the first attempts to use biotechnology to increase the Ca content of an agriculturally important crop.

Arabidopsis Calcium Carrot H+/Ca2+ transporter Nutrition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachrach L.K. 2001. Acquisition of optimal bone mass in child-hood and adolescence. Trends. Endocrin. Met. 12: 22-28.Google Scholar
  2. Bassett M.J. 1986. Breeding vegetable crops. AVI Publishing, Connecticut, USA.Google Scholar
  3. Bryant R.J., Cadogan J. and Weaver C.M. 1999. The new dietary reference intakes for calcium: Implications for osteoporosis. J. Am. College of Nutr. 18: 406S-412S.Google Scholar
  4. Doerner P., Jorgensen J-E., You R., Steppuhn J. and Lamb C. 1996. Control of root growth and development by cyclin expression. Nature 380: 520-523.Google Scholar
  5. Duncan D.B. 1955. Multiple range and multiple F tests. Biomet-rics 11: 1-42. Economic Research Service/USDA 1997. Agricultural outlook. 11-13.Google Scholar
  6. Feagley S.E., Valdez M.S. and Hudnall W.H. 1994. Papermill sludge, phosphorous, potassium, and lime effect on clover grown on a mine soil. J. Environ Qual. 23: 759-765.Google Scholar
  7. Grusak M.A., Pezeshgi S., O'Brien K.O. and Abrams S.A. 1996. Intrinsic Ca-Labelling of Green Bean Pods for Use in Human Bioavailability Studies. J. Sci. Food Agric. 70: 11-15.Google Scholar
  8. Hirschi K.D. 2001. Vacuolar H + /Ca 2+ transport: Who's directing the traffic? Trends Plant Sci. 6: 100-104.Google Scholar
  9. Hirschi K.D. 1999. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11: 2113-2122.Google Scholar
  10. Hoekema A., Hirsch P.R., Hooykaas P.J.J. and Schillperoort R.A. 1983. A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179-180.Google Scholar
  11. Holsters M., De Waele D., Depicker A., Messens E., Van Montagu M. and Schell J. 1978. Transfection and transformation of A. tumefaciens. Mol. Gen. Genet. 163: 181-187.Google Scholar
  12. Lopez-Lefebre L.R., Rivero R.M., Garcia P.C., Sanchez E., Ruiz J.M. and Romero L. 2001. Effect of calcium on mineral nutrient uptake and and growth of tobacco. J. Sci. Food Agricul. 81: 1334-1338.Google Scholar
  13. Marschner H. 1995. Mineral nutrition of higher plants. Academic Press, New York, USA.Google Scholar
  14. Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.Google Scholar
  15. Park S.H., Pinson S.R.M. and Smith R.H. 1996. T-DNA integra-tion into genomic DNA of rice following Agrobacterium inocu-lation of isolated shoot apices. Plant Mol. Biol. 32: 1135-1148.Google Scholar
  16. Paterson A.H., Brubaker C.L. and Wendel J.F. 1993. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol. Biol. Rep. 11: 122-127.Google Scholar
  17. Picchioni G.A., Valenzuela-Vazquez M. and Armenta-Sanchez S. 2001. Calcium activated root growth and mineral nutrient accu-mulation of Lupinus havardii: Ecophysiological and horticultural significance. J. Am. Soc. Hort. Sci. 126: 631-637.Google Scholar
  18. Pittman J.K. and Hirschi K.D. 2001. Regulation of CAX1, an Ara-bidopsis Ca 2+ /H + antiporter: Identification of an N-terminal au-toinhibitory domain. Plant Physiol. 127: 1020-1029.Google Scholar
  19. Pittman J.K., Shigaki T., Cheng N-H. and Hirschi K.D. 2002. Mechanism of N-terminal autoinhibition in the Arabidopsis Ca 2+ /H + antiporter CAX1. J. Biol. Chem. 277: 26452-26453acessing Newsletter, Univ. of Notre Dame 3: 1-3.Google Scholar
  20. Weaver C.M., Proulx W.R. and Heaney R. 1999. Choices for achieving adequate dietary calcium with a vegetarian diet. Am. J. Clin. Nutr. 70: 543S-548S.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Sunghun Park
    • 1
  • Chang-Kil Kim
    • 2
  • Leonard M. Pike
    • 1
  • Roberta H. Smith
    • 1
  • Kendal D. Hirschi
    • 3
    • 1
  1. 1.Vegetable and Fruit Improvement CenterTexas A&M University, College Station
  2. 2.Dept. of HorticultureSang-Ju National UniversityKyungpookKorea
  3. 3.Baylor College of Medicine, Depts of Pediatrics, and Human and Molecular GeneticsUSDA/ARS Children's Nutrition Research CenterHouston

Personalised recommendations