Advertisement

Molecular Breeding

, Volume 14, Issue 2, pp 153–170 | Cite as

Functional association between malting quality trait components and cDNA array based expression patterns in barley (Hordeum vulgare L.)

  • E. Potokina
  • M. Caspers
  • M. Prasad
  • R. Kota
  • H. Zhang
  • N. Sreenivasulu
  • M. Wang
  • A. Graner
Article

Abstract

We developed an approach for relating differences in gene expression to the phenotypic variation of a trait of interest. This allows the identification of candidate genes for traits that display quantitative variation. To validate the principle, gene expression was monitored on a cDNA array with 1400 ESTs to identify genes involved in the variation of the complex trait ‘malting quality’ in barley. RNA profiles were monitored during grain germination in a set of 10 barley genotypes that had been characterized for 6 quality-associated trait components. The selection of the candidate genes was achieved via a correlation of dissimilarity matrices that were based on (i) trait variation and (ii) gene expression data. As expected, a comparison based on the complete set of differentially-expressed genes did not reveal any correlation between the matrices, because not all genes that show differential expression between the 10 cultivars are responsible for the observed differences in malting quality. However, by iteratively taking out one gene (with replacement) and re-computing the correlation, those genes that are positively contributing to the correlation could be identified. Using this procedure between 17 and 30 candidate genes were identified for each of the six malting parameters analysed. In addition to genes of unknown function, the list of candidates contains well-known malting-related genes. Five out of eight mapped candidate genes display linkage to known QTLs for malting quality traits. The described functional association strategy may provide an efficient link between functional genomics and plant breeding.

Candidate gene identification EST Functional genomics Gene expression QTL mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni A. and Vorst O. 2001. DNA microarrays for functional plant genomics. Plant Mol. Biol. 48: 99–118.Google Scholar
  2. Burger W.C. and LaBerge D.E. 1985. Malting and Brewing Quality, In: Rasmusson D.G.(ed.) Barley, Publishers Madison, Wisconsin, USA, pp. 367–401.Google Scholar
  3. Bamforth C.W. and Barclay A.H.P. 1993. Malting Technology and the Uses of Malt. In: MacGregor A.W. and Bhatty R.S. (eds), Barley: Chemistry and Technology. American Association of Cereal Chemists, Inc. St. Paul, Minnesota, USA, pp. 297–355.Google Scholar
  4. Cheng Y., Pu T., Xue Y. and Zhang C. 2001. PcTGD, a highly expressed gene in stem, is related to water stress in reed (Phragmites communisTrin.). Chinese Science Bulletin 46: 850–854.Google Scholar
  5. Costa J.M., Corey A., Hayes P.M., Jobet C., Kleinhofs A., Kopisch-Obusch A., Kramer S.F., Kudrna D., Li M., Riera-Lizarazu O., Sato K., Szucs P., Toojinda T., Vales M.I. and Wolfe R.I. 2001. Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl. Genet. 103: 415–424.Google Scholar
  6. Curtin F. and Schulz P. 1998. Multiple correlations and bonferroni's correction. Biological Psychiatry. 44: 775–777.Google Scholar
  7. Felsenstein J. 1995. PHYLIP (Phylogeny Inference Package). Version 3.57c. http://evolution.genetics.washington.edu/phylip.htmlGoogle Scholar
  8. Fincher G.B. and Stone B.A. 1993. Physiology and Biochemistry of Germination in Barley In: MacGregor A. W. and Bhatty R.S.Barley: Chemistry and Technology. American Association of Cereal Chemists, Inc. St.Paul, Minnesota, USA, pp. 247–296.Google Scholar
  9. Graner A., Jahoor A., Schondelmaier H., Siedler K., Pillen G., Wenzel G. and Herrmann R.G. 1991. Construction of RFLP map of barley. Theor. Appl. Genet. 83: 250–256.Google Scholar
  10. Grossi M., Gulli M., Stanca A.M. and Gattivelli L. 1995. Characterization of two barley genes that respond rapidly to dehydration stress. Plant Sci. 109: 71–80.Google Scholar
  11. Han F., Ullrich S.E., Kleinhofs A., Jones B.L., Hayes P.M. and Wesenberg D.M. 1997. Fine structure mapping of the barley chromosome-1 centromere region containing malting-quality QTLs. Theor. Appl. Genet. 95: 903–910.Google Scholar
  12. Hayes P.M. and Jones B.L. 2000. Malting quality from a QTL perspective. In: 8th International Barley Genetics Symposium, Adelaide Convention Centre, Adelaide, South Australia 8: 99–105.Google Scholar
  13. Hayes P.M., Liu B.H., Knapp S.J., Chen F., Jones B., Blake T., Franckowiak J., Rasmusson D., Sorrels M., Ullrich S.E., Wesenberg D. and Kleinhofs A. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87: 392–401.Google Scholar
  14. Jansen R.C. and Nap J.P. 2001. Genetical genomics: the added value from segregation. Trends in Genetics 17: 338–391.Google Scholar
  15. Kleinhofs A. and Graner A. 1999. An integrated map of the barley genome In: Phillips R.L. and Vasil I.K. (eds), DNA-Based Marker in Plants. Kluwer Academic Publishers, 2nd edition, pp. 187–199.Google Scholar
  16. Kota R., Wolf M., Michalek W. and Graner A. 2001. Application of denaturing high-perfomance liquid chromatography for mapping of single nucleotide polymorphisms in barley (Hordeum vulgareL.). Genome 44: 1–6.Google Scholar
  17. Kobrehel K., Wong J.H., Balogh A., Kiss F., Yee B.C. and Buchanan B.B. 1992. Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiol. 99: 919–924.Google Scholar
  18. Kosambi D.D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12: 172–175.Google Scholar
  19. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E. and Newburg L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.Google Scholar
  20. Larson S.R., Habernicht D.K., Blake T.K. and Adamson 1997. Backcross gains for six-rowed grain and malt qualities with introgression of a feed barley yield QTL. J. Am. Soc. Brew. Chem. 55: 52–57.Google Scholar
  21. Liedloff A. 1999. Mantel Nonparametric Test Calculator for Windows Version 2. 00. http://www.sci.qut.edu.au/nrs/mantel.htmGoogle Scholar
  22. Loi L., Barton P.A. and Fincher G.B. 1987. Survival of barley (1-3, 1-4)-β-glucanase isoenzymes during kilning and mashing. J. Cereal Sci 5: 45-50.Google Scholar
  23. Mantel N.A. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.Google Scholar
  24. Mather D.E., Tinker N.A., LaBerge D.E., Edney M., Jones B.L., Rossnagel B.G., Legge W.G., Briggs K.G., Irvine R.B., Falk D.E. and Kasha K.J. 1997. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci. 37: 544–554.Google Scholar
  25. Michalek W., Weschke W., Pleissner K.P. and Graner A. 2002. EST analysis in barley defines a unique set comprising 4000 genes. Theor. Appl. Genet. 104: 97–103.Google Scholar
  26. Melchinger A.E., Graner A., Singh M. and Messmer M.M. 1994.Relationships among European barley germplasm. I. Genetic diversity among winter and spring cultivars revealed by RFLPs. Crop Sci. 34: 1191–1199.Google Scholar
  27. Nelson J.C. 1997. QGENE: software for marker-based genomic analysis and breeding. Mol. Breed. 3: 239–245.Google Scholar
  28. Oziel A., Hayes P. M., Chen F. Q. and Jones B. 1996. Application of quantitative trait locus mapping to the development of winter habit malting barley. Plant Breed. 115: 43–51.Google Scholar
  29. Potokina E., Sreenivalusu N., Altschmied L., Michalek W. and Graner A. 2002. Differential gene expression during seed germination in barley (Hordeum Vulgare L.) Funct.Integr.Genomics 2: 28-39.Google Scholar
  30. Reiter W.D. and Vanzin G.F. 2001. Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol. Biol. 47: 95–113.Google Scholar
  31. Russell J.R., Booth A., Fuller J.D., Baum M., Cecarelli S., Grando S. and Powell W. 2003. Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan. Theor. Appl. Genet. 107: 413–421.Google Scholar
  32. Serrato A.J., Crespo J.L., Florencio F.J. and Cejudo F.J. 2001.Characterization of two thioredoxins hwith predominant localization in the nucleus of aleurone and scutellum cells of germinating wheat seeds. Plant Mol. Biol. 46: 361–371.Google Scholar
  33. Slack P.T., Baxter E.D. and Wainwright T. 1979. Inhibition by hordein of starch degradation. J. Inst. Brew. 85: 112–114.Google Scholar
  34. Sreenivasulu N., Altschmied L., Panitz R., Hännel U., Michalek W., Weschke W. and Wobus U. 2001. Identification of genes specifically expressed in maternal and filial tissues of barley caryopsis: a cDNA array analysis. Mol. Genet. Genom. 266: 758–767.Google Scholar
  35. Sokal R. R. and Sneath P.H.A. 1963. Principles of Numerical Taxonomy. San Francisco. 359 p.Google Scholar
  36. Sokal R.R. and Rholf F.J. 2001. Biometry: the principle of statistics in biological research. 3rd edition. W.H. Freeman and Co., San Francisco and London. 887 pp. 169Google Scholar
  37. Swanston J.S., Thomas W.T., Powell W., Young G.R., Lawrence P.E., Ramsay L. and Waugh R. 1999. Using molecular markers to determine barleys most suitable for malt whisky distilling. Mol. Breed. 5(2): 103–109.Google Scholar
  38. Toma D.P., White K.P., Hirsch J. and Greenspan R.J. 2002. Identification of genes involved in Drosophila melanogastergeotaxis, a complex behavioural trait. Nature Genetics 31: 349–353.Google Scholar
  39. Tukey J.W. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, 688 pp.Google Scholar
  40. Wainwright T. 1988. Effect of barley and malt lipids on beer properties. Monogr. Eur. Brew. Conv. 6: 118–128.Google Scholar
  41. Urano J., Nakagawa T., Maki Y., Masumura T., Tanaka K., Murata N. and Ushimaru T. 2000. Molecular cloning and characterisation of a rice dehydroascorbate reductase. FEBS Letters 466: 107–111.Google Scholar
  42. Wayne M.L. and McIntyre L.M. 2002. Combining mapping and arraying: An approach to candidate gene identification. Proc. Natl. Acad. Sci. USA 99: 14903–14906. 170Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • E. Potokina
    • 1
  • M. Caspers
    • 2
  • M. Prasad
    • 1
  • R. Kota
    • 1
  • H. Zhang
    • 1
  • N. Sreenivasulu
    • 1
  • M. Wang
    • 2
  • A. Graner
    • 1
  1. 1.Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Center for Phytotechnology RUL/TNOAL LeidenThe Netherlands

Personalised recommendations