Molecular Breeding

, Volume 14, Issue 2, pp 91–104 | Cite as

Validation of quantitative trait loci for Fusarium head blight and kernel discoloration in barley

  • Paulo C. Canci
  • Lexingtons M. Nduulu
  • Gary J. Muehlbauer
  • Ruth Dill-Macky
  • Donald C. Rasmusson
  • Kevin P. Smith


Validation of quantitative trait loci (QTLs) is a prerequisite to marker assisted selection (MAS), however, only a fraction of QTLs identified for important plant traits have been independently tested for validation. Resistance to the diseases kernel discoloration (KD) and Fusarium head blight (FHB) in barley is complex and technically difficult to assess, and therefore QTLs for these traits are suitable targets for MAS. We selected two lines, from a QTL mapping population created using the resistant variety Chevron, and crossed them to susceptible parents to generate two validation populations. Genetic maps of both populations were developed for five chromosomes covering 15 selected regions containing QTLs for FHB severity, KD score and concentration of deoxynivalenol (DON), a mycotoxin produced by the FHB pathogen. QTL analyses using these validation populations confirmed that five of the possible 15 QTL regions were associated with at least one of the three traits. While some QTL were detected inconsistently across environments, QTL that could be subjected to validation in both populations were confirmed in both populations in seven out of eight instances. A QTL for KD score on chromosome 6(6H) was confirmed in both validation populations in eight of nine environments and was also associated with FHB in three of six environments. A QTL for FHB on chromosome 2(2H) was confirmed and was also associated with KD and heading date. Marker assisted selection at these two QTLs should enhance disease resistance, however, the QTL on chromosome 2(2H) will also delay heading date.

Fusarium graminearum Bipolaris sorokiniana FHB QTL Disease resistance Deoxynivalenol breeding Marker assisted selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bassam B.J., Caetano-Anolles G. and Gresshoff. P.M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80–83.Google Scholar
  2. Beavis E.E. 1998. QTL Analysis: power, precision and accuracy. In: Paterson A.H. (ed.), Molecular dissection of complex traits. CRC Press, Boca Raton, Florida, USA, p. 145–162.Google Scholar
  3. Canci P.C., Nduulu L., Dill-Macky R., Muehlbauer G.J., Rasmusson D.C. and Smith K.P. 2003. The genetic relationship between kernel discoloration and grain protein in barley. Crop Sci. 43: 1671–1679.Google Scholar
  4. Castrol A.J., Chen X., Hayes P.M. and M. Johnston. 2003. Pyramiding quantitative trait locus (alleles) determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Sci. 43: 651–659.Google Scholar
  5. Chen X.M., Line R.F. and H. Leung. 1998. Genome scanning for esistance gene analogs in rice, barley, and wheat by high resolution lectrophoresis. Theor. Appl. Genet. 97: 345–355.Google Scholar
  6. de la Peña R.C., Murray T.D., Jones S.S. 1996. Linkage relationships among eyespot resistance gene Pch2, endopeptidase p-A1b, and RFLP marker Xpsr121 on chromosome 7A of heat. Plant Breeding 115: 273–275.Google Scholar
  7. de la Peña R., Smith K.P., Capettini F., Muehlbauer G.J., Gallo-Meagher M., Dill-Macky R., Somers D. and Rasmusson D.C. 1999. Quantitative trait loci associated with resistance to usarium head blight and kernel discoloration in barley. Theor. ppl. Genet. 99: 561–569.Google Scholar
  8. Franckowiak J.D., Konishi T. 2002. BGS 98, early maturity 6, am6. Barley Genet. Newsl. 32: 88–89.Google Scholar
  9. Han F., Romagosa I., Ullrich S.E., Jones B.L., Hayes P.M. and Wesenberg D.M. 1997. Molecular marker-assisted selection for alting quality traits in barley. Mol. Breed. 3: 427–437.Google Scholar
  10. Hayes P.M., Liu B.H., Knapp S.J., Chen F., Jones B., Blake T., Franckowiak J., Rasmusson D., Sorrells M., Ullrich D. Wesenberg nd A. Kleinhofs. 1993. Quantitative trait locus effects and evironmental interaction in a sample of North American barley ermplasm. Theor. Appl. Genet. 87: 392–401.Google Scholar
  11. Holloway J.L. and Knapp S.J., 1994. Gmendel 3.0 Users Guide, Department of Crop and Soil Science, Oregon State University, orvallis, Oregon, USA. Available at:http://gnome.agrenv.mcgill.a/info/gmendel.htmGoogle Scholar
  12. Kleinhofs A., Kilian A., Saghai Maroof M.A., Biyashev R.M., Hayes P., Chen F.Q., Lapitan N., Fenwick A., Blake T.K., Kanazin V, Ananiev E., Dahleen L., Kudrna D., Bollinger I., Knapp I., Liu B., Sorrells M, Heun M., Franckowiak J.D., Hoffmann., Skadsen R. and Steffenson B.J. 1993. A molecular, isozyme and morphological map of barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86: 705–712.Google Scholar
  13. Larson S.R., Kadyrzhanova D., McDonald D., Sorrells M. and lake T.K. 1996. Evaluation of barley chromosome-3 yield TLs in a backcross F2 population using STS-PCR. Theor. Appl. Genet. 93: 618–625.Google Scholar
  14. Liu Z.W., Biyashev R.M. and Saghai Maroof M.A. 1996. Development of simple sequence repeat DNA markers and their integration nto a barley genetic map. Theor. Appl. Genet. 93: 869–76.Google Scholar
  15. Ma Z., Steffenson B.J., Prom L.K. and Lapitan N.L.V. 2000. Mapping quantitative trait loci for Fusarium head blight resistance in arley. Phytopathology 90: 1079-1088. athre D.E. 1997. Compendium of barley diseases, 2nd edn. merican Phytopathological Society, St. Paul, Minnesota, USA.Google Scholar
  16. McMullen M.P., Jones R. and Gallenberg D. 1997. Scab of wheat nd barley: A re-emerging disease of devastating impact. Plant is. 81: 1340–1348.Google Scholar
  17. Mesfin A., Smith K.P., Dill-Macky R., Evans C.K., Waugh R., Gustus C.D. and Muehlbauer G.J. 2003. Quantitative trait loci or Fusarium head blight resistance in barley detected in a tworowed y six-rowed population. Crop Sci. 43: 307–318.Google Scholar
  18. Miles M.R., Wilcoxson R.D., Rasmusson D.C., Wiersma J. and Warnes D. 1987. Influence of genotype and environment on kernel discloration of Midwestern malting barley. Plant Dis. 71: 500–504.Google Scholar
  19. Mirocha C.J., Kolaczkowski E., Xie W., Yu H. and Jelen H. 1998. Analysis deoxynivalenol derivatives (batch nd single ernel)chromatography/mass spectrometry.J. Agric. ood Chem. 46: 1414–1418.Google Scholar
  20. Qi X., Stam P. and Lindhout P. 1996. Comparison and integration f four barley genetic maps. Genome 39: 379–394.Google Scholar
  21. Ramsay L., Macaulay M., degli Ivanissevich S., MacLean K., Cardle L., Fuller J., Edwards K.J., Tuvesson S., Morgante M., assari A., Maestri E., Marmiroli N., Sjakste T., Ganal M., Powell W. and Waugh R. 2000. A simple sequence repeat-based inkage map of barley. Genetics 156: 1997–2005.Google Scholar
  22. Rasmusson D.C., Wilcoxson R.D., Dill-Macky R., Schiefelbein L. and Wiersma J.V. 1999. Registration of 'MNBrite'Barley. Crop Sci.39:290.Google Scholar
  23. Rasmusson D.C., Wilcoxson R.D. and Wiersma J.V. 1993. Registration of Stander' Barley. Crop Sci. 33: 1403.Google Scholar
  24. Romagosa I., Han F., Ullrich S.E., Hayes P.M. and Wesenberg M. 1999. Verification of yield QTL through realized molecular marker-assited selection responses in a barley cross. Mol. Breed:143–152.Google Scholar
  25. Spaner D., Rossnagel B.G., Legge W.G., Scoles G.J., Eckstein P.E., P.A. Penner, N.A. Tinker, Briggs K.G., Flak D.E., Afele J.C., Hayes P.M. and Mather D.E. 1999. Verification of quantitative a 103 trait locus affecting agronomic traits in two-row barley. Crop Sci. 39:248–252.Google Scholar
  26. Steffenson B.J. 2002. Fusarium Head Blight of Barley: Impact, Epidemics Management, and Strategies for Identifying and Utilizing Genetic Resistance In:Leonard K. L. and Bushell W.R. (eds), Fusarium head blight of wheat and barley. The American Phytopathological Society, St. Paul, Minnesota, USA.Google Scholar
  27. Tinker N.A., Mather D.E., Rossnagel B.G., Kasha K.J., Kleinhofs A., Hayes P.M., Falk D.E., Ferguson T., Shugar L.P., Legge W.G., Irvine R.B., Choo T.M., Briggs K.G., Ulrich S.E., Franckowiak J.D., Blake T.K., Graf R.J., Dofing S.M., Saghai-Maroof M.A., Scoles G.J., Hoffman D., Dahleen L.S., Killian A., Chen F., Biyashev R.M., Kudrna D.A. and Steffenson B.J. 1996. Regions of the enome that affects agronomic performance in tworow barley. Crop Sci. 36: 1053–1062.Google Scholar
  28. Utz H. F., Melchinger A.E. and Schön C.C. 2000. Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154: 1839–1849.Google Scholar
  29. Utz H.F. and Melchinger A.E. 1996. PLABQTL: A program for composite interval mapping of QTL. J. Quant. Trait Loci. http:// Scholar
  30. Zeng Z.B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.Google Scholar
  31. Zhu H., Gilchrist L., Hayes P., Kleinhofs A., Kudrna D., Liu Z., Prom L., Steffenson B., Toojinda T. and Vivar H. 1999. Does function follow form? Principal QTLs for Fusariumhead blight are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor. Appl. Genet. 9: 1221–1232.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Paulo C. Canci
    • 1
  • Lexingtons M. Nduulu
    • 1
  • Gary J. Muehlbauer
    • 1
  • Ruth Dill-Macky
    • 2
  • Donald C. Rasmusson
    • 3
  • Kevin P. Smith
    • 3
  1. 1.Dept. of Agronomy and Plant GeneticsUniversity of MinnesotaSt. Paul
  2. 2.Dept. of Plant PathologyUniversity of MinnesotaSaint Paul
  3. 3.Dept. of Agronomy and Plant GeneticsUniversity of MinnesotaSt. Paul

Personalised recommendations