Molecular Breeding

, Volume 13, Issue 4, pp 313–322 | Cite as

Mapping minor QTL for increased stearic acid content in sunflower seed oil

  • Begoña Pérez-Vich
  • Steven J. Knapp
  • Alberto J. Leon
  • José M. Fernández-Martínez
  • Simon T. Berry


Increased stearic acid (C18:0) content in the seed oil of sunflower would improve the oil quality for some edible uses. The sunflower line CAS-20 (C18:0 genotype Es1Es1es2es2), developed from the high C18:0 mutant line CAS-3 (C18:0 genotype es1es1es2es2; 25% C18:0), shows increased C18:0 levels in its seed oil (8.6%). The objective of this research was to map quantitative trait loci (QTL) conferring increased C18:0 content in CAS-20 in an F2 mapping population developed from crosses between HA-89 (wild type Es1Es1Es2Es2; low C18:0) and CAS-20, which segregates independently of the macromutation Es1 controlling high C18:0 content in CAS-3. Seed oil fatty acid composition was measured in the F2 population by gas-liquid chromatography. A genetic linkage map of 17 linkage groups (LGs) comprising 80 RFLP and 19 SSR marker loci from this population was used to identify QTL controlling fatty acid composition. Three QTL affecting C18:0 content were identified on LG3, LG11, and LG13, with all alleles for increased C18:0 content inherited from CAS-20. In total, these QTL explained 43.6% of the C18:0 phenotypic variation. Additionally, four candidate genes (two stearate desaturase genes, SAD6 and SAD17, and a FatA and a FatB thioesterase gene) were placed on the QTL map. On the basis of positional information, QTL on LG11 was suggested to be a SAD6 locus. The results presented show that increased C18:0 content in sunflower seed oil is not a simple trait, and the markers flanking these QTL constitute a powerful tool for plant breeding programs.

Candidate genes Helianthus annuus Marker assisted selection Oil quality Quantitative trait loci Stearic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ascherio A. and Willett W.C. 1997. Health effects of trans fatty acids. Am. J. Clin. Nutr. 66 (suppl.): 1006S–1010S.Google Scholar
  2. Berry S.T., Allen R.J., Barnes S.R. and Caligari P.D.S. 1994. Molecular analysis of Helianthus annuus L. 1. Restriction length polymorphism between inbred lines of cultivated sunflower. Theor. Appl. Genet. 89: 435–441.Google Scholar
  3. Berry S.T., Leon A.J., Hanfrey C.C., Challis P., Burkholz A., Barnes S.R., Rufener G.K., Lee M. and Caligari P.D.S. 1995. Molecular marker analysis of Helianthus annuus L. 2. Construction of an RFLP linkage map for cultivated sunflower. Theor. Appl. Genet. 91: 195–199.Google Scholar
  4. Berry S.T., Leon A.J., Challis P., Livini C., Jones R., Hanfrey C.C., Griffiths S. and Roberts A. 1996. Construction of a high density, composite RFLP linkage map for cultivated sunflower (Helian-thus annuus L.). In: Proc 14th Int. Sunflower Conf., Beijing/ Shenyang, China, pp. 1155–1160.Google Scholar
  5. Berry S.T., Leon A.J., Peerbolte R., Challis P., Livini C., Jones R. and Feingold S. 1997. Presentation of the Advanta sunflower RFLP linkage map for public research. In: Proc 19th Sunflower Research Workshop, Fargo, USA, pp. 113–118.Google Scholar
  6. Bohn M., Khairallah M.M., González-de-león D., Hoisington D.A., Utz H.F., Deutsch J.A., Jewell D.C., Mihm J.A. and Melchinger A.E. 1996. QTL mapping in tropical maize: I. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci. 36: 1352–1361.Google Scholar
  7. Cantisán S., Martínez-Force E. and Garcés R. 2000. Enzymatic studies of high stearic acid sunflower seed mutants. Plant Physiol. Biochem. 38: 377–382.Google Scholar
  8. Churchill G.A. and Doerge R.W. 1994. Empirical threshold valued for quantitative trait mapping. Genetics 138: 963–971.Google Scholar
  9. Doerge R.W. and Churchill G.A. 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285–294.Google Scholar
  10. Facciotti M.T., Bertain P. and Yuan L. 1999. Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nature Biotech. 17: 593–597.Google Scholar
  11. Falconer D.S. 1989. Introduction to quantitative genetics, 3rd edn. Longman Group, London, UK, 340 pp.Google Scholar
  12. Gentzbittel L., Vear F., Zhang Y.X., Bervillé A. and Nicolas P. 1995. Development of a consensus linkage RFLP map of culti-vated sunflower (Helianthus annuus L.). Theor. Appl. Genet. 90: 1079–1086.Google Scholar
  13. Haley C.S. and Knott S.A. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324.Google Scholar
  14. Hawkins D.J. and Kridl J.C. 1998. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J. 13: 743–752.Google Scholar
  15. Hongtrakul V., Slabaugh M.B. and Knapp S. 1998. DFLP, SSCP and SSR markers for Δ-9-stearoyl-acyl carrier protein desaturases strongly expressed in developing seeds of sunflower: Intron lengths are polymorphic among elite inbred lines. Mol. Breed. 4: 195–203.Google Scholar
  16. Jansen R.C. and Stam P. 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447–1455.Google Scholar
  17. Jones A., Davies H.M. and Voelker T.A. 1995. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7: 359–371.Google Scholar
  18. Knutzon D.S., Thompson G.A., Radke S.E., Johnson W.B. and Knauf V.C. 1992. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA 89: 2624–2628.Google Scholar
  19. Kritchevsky D., Tepper S.A., Kuksis A., Eghtedary K. and Klurfeld D.M. 1995. Influence of triglyceride structure on experimental arteriosclerosis. Fed. Am. Soc. Exp. Biol. J. 9: A320.Google Scholar
  20. Lander E., Green P., Abrahanson J., Barlow A., Daley M., Lincoln S. and Newburg L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.Google Scholar
  21. Martínez-Force E., Cantisán S., Serrano-Vega M.J. and Garcés R. 2000. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Planta 211: 673–678.Google Scholar
  22. Osorio J., Fernández-Martínez J.M., Mancha M. and Garcés R. 1995. Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Sci. 35: 739–742.Google Scholar
  23. Paniego N., Echaide M., Muñoz M., Fernández L., Torales S., Faccio P., Fuxan I., Carrera M., Zandomeni R., Suárez E.Y. and Hopp H.E. 2002. Microsatellite isolation and characterisation in sunflower (Helianthus annuus L.). Genome 45: 34–43.Google Scholar
  24. Pearson T.A. 1994. Stearic acid and cardiovascular disease-answer and questions. Am. J. Clin. Nut. 60: 1017–1072.Google Scholar
  25. Pérez-Vich B., Garcés R. and Fernández-Martínez J.M. 1999. Genetic control of high stearic acid content in the seed oil of sunflower mutant CAS-3. Theor. Appl. Genet. 99: 663–669.Google Scholar
  26. Pérez-Vich B., Fernández-Martínez J.M., Grondona M., Knapp S.J. and Berry S.T. 2002. Stearoyl-ACP and oleoyl-PC desaturase genes cosegregate with quantitative trait loci underlying high stearic and high oleic acid mutant phenotypes in sunflower. Theor. Appl. Genet. 104: 338–349.Google Scholar
  27. Pérez-Vich B., Muñoz-Ruz J. and Fernández-Martínez J.M. 2004. Developing mid-stearic acid sunflower lines from a high stearic acid mutant. Crop Sci. 44: 70–75.Google Scholar
  28. Snedecor G.W. and Cochran W.G. 1989. Statistical Methods. 8th edition. Iowa State University Press, Iowa, EEUU.Google Scholar
  29. Somerville C., Browse J.A., Jaworski J.G. and Ohlrogge J.B. 2000. Lipids. In: Buchanan B.B., Gruissem W. and Jones R.L. (eds), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, Maryland, EEUU, pp. 456–526.Google Scholar
  30. Tang S., Yu J.K., Slabaugh M., Shintani D.K. and Knapp S.J. 2002. Simple sequence repeat map of the sunflower genome. Theor. Appl. Genet. 105: 1124–1136.Google Scholar
  31. Utz H.F. and Melchinger A.E. 1996. PLABQTL: A program for composite interval mapping of QTL. J. Quant Trait Loci 2 (1).Google Scholar
  32. Voelker T.A., Jones A., Cranmer A.M., Davies H.M. and Knutzon D.S. 1997. Broad-range and binary-range-acyl-carrier-protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol. 114: 669–677.Google Scholar
  33. Yu J.K., Tang S., Slabaugh M.B., Heesacker A., Cole G., Herring M., Soper J., Han F., Chu W.C., Webb D.M., Thompson L., Edwards K.J., Berry S., Leon A.J., Olungu C., Maes N. and Knapp S.J. 2003. Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci. 43: 367–387.Google Scholar
  34. Zeng Z.B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Begoña Pérez-Vich
    • 1
  • Steven J. Knapp
    • 2
  • Alberto J. Leon
    • 3
  • José M. Fernández-Martínez
    • 1
  • Simon T. Berry
    • 4
  1. 1.Instituto de Agricultura Sostenible (CSIC)CórdobaSpain
  2. 2.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA
  3. 3.Advanta Semillas, Ruta 226Balcarce, Buenos AiresArgentina
  4. 4.Advanta Biotechnology LaboratorySES-Europe NV/SATienenBelgium

Personalised recommendations