Molecular Breeding

, Volume 13, Issue 3, pp 251–261

An integrated genetic linkage map of pepper (Capsicum spp.)

  • Ilan Paran
  • Jeroen Rouppe van der Voort
  • Véronique Lefebvre
  • Molly Jahn
  • Laurie Landry
  • Marco van Schriek
  • Bahattin Tanyolac
  • Carole Caranta
  • Arnon Ben Chaim
  • Kevin Livingstone
  • Alain Palloix
  • Johan Peleman
Article

Abstract

An integrated genetic map of pepper including 6 distinct progenies and consisting of 2262 markers covering 1832 cM was constructed using pooled data from six individual maps by the Keygene proprietary software package INTMAP. The map included: 1528 AFLP, 440 RFLP, 288 RAPD and several known gene sequences, isozymes and morphological markers. In total, 320 anchor markers (common markers in at least two individual maps) were used for map integration. Most anchor markers (265) were common to two maps, while 27, 26 and 5 markers were common to three, four and five maps, respectively. Map integration improved the average marker density in the genome to 1 marker per 0.8 cM compared to 1 marker per 2.1 cM in the most dense individual map. In addition, the number of gaps of at least 10 cM between adjacent markers was reduced in the integrated map. Although marker density and genome coverage were improved in the integrated map, several small linkage groups remained, indicating that further marker saturation will be needed in order to obtain a full coverage of the pepper genome. The integrated map can be used as a reference for future mapping studies in Capsicum and to improve the utilization of molecular markers for pepper breeding.

Capsicum Integrated linkage map Molecular markers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben Chaim A., Paran I., Grube R., Jahn M., van Wijk R. and Pele-man J. 2001a. QTL mapping of fruit related traits in pepper(Capsicum annuum). Theor. Appl. Genet. 102: 1016–1028.Google Scholar
  2. Ben Chaim A., Grube R., Lapidot M., Jahn M. and Paran I. 2001b. Identification of quantitative trait loci associated with resistanceto cucumber mosaic virus in Capsicum annuum. Theor. Appl. Genet. 102: 1213–1220.Google Scholar
  3. Caranta C., Lefebvre V. and Palloix A. 1997. Polygenic resistance of pepper to potyviruses consists of a combination of isolatespecific and broad spectrum quantitative trait loci. Mol. Plant-Microbe Interactions 10: 872–878.Google Scholar
  4. Gedil M. A., Wye C., Berry S., Segers B., Peleman J., Jones R., Leon A., Slabaugh M. B. and Knapp S. J. 2001. An integrated restriction fragment length polymorphism-amplified fragment length polymorphism linkage map for cultivated sunflower. Ge-nome 44: 213–221.Google Scholar
  5. Grube R.C., Blauth J. R., Arnedo Andres M.S., Caranta C. and Jahn M.M. 2000. Identification and comparative mapping of a dominant potyvirus gene cluster in Capsicum. Theor. Appl. Genet. 101: 852–859.Google Scholar
  6. Haanstra J.P.W., Wye C., Verbakel H., Meijer-Dekens F., van denBerg P., Odinot P., van Heusden A.W., Tanksley S., Lindhout P. and Peleman J. 1999. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x L. pen-nelliiF2 populations. Theor. Appl. Genet. 99: 254–271.Google Scholar
  7. Jahn M., Paran I., Hoffmann K., Radwansky E., Livingstone K., Grube R., Aftergoot E., Lapidot M. and Moyer J., 2000. Genetic mapping of the Tsw locus for resistance to the Tospovirus tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol. Plant-Microbe Interaction 13: 673–682.Google Scholar
  8. Jeuken M., van Wijk R., Peleman J. and Lindhout P. 2001. An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa and L. saligna F2 populations. Theor. Appl. Genet. 103: 638–647.Google Scholar
  9. Kang B.C., Nahm S.H., Huh J.H., Yoo H.S., Yu J.W., Lee M.H. and Kim B. D. 2001. An interspecific (Capsicum annuum x C. chinense) F2 linkage map in pepper using RFLP and AFLP markers. Theor. Appl. Genet. 102: 531–539.Google Scholar
  10. Lefebvre V., Palloix A., Caranta C. and Pochard E. 1995. Construction of an intra-specific integrated linkage map of pep-perusing molecular markers and doubled-haploid progenies. Genome 38: 112–121.Google Scholar
  11. Lefebvre V. and Palloix A. 1996. Both epistatic and additive effects of QTLs are involved in polygenic-induced resistance todisease: a case study, the interaction pepper-phytophthora cap-sici Leon. Theor. Appl. Genet. 94: 503–511.Google Scholar
  12. Lefebvre V., Kuntz M., Camara B. and Palloix A. 1998. Capsan-thin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit color in pepper. Plant Mol. Biol. 36: 785–789.Google Scholar
  13. Lefebvre V., Pflieger S., Thabuis A., Caranta C., Blattes A., Chauvet J.-C., Daubeze A. M-. and Palloix A. 2002. Towards the saturation of the pepper linkage map by alignment of three intra specific maps including known-function genes. Genome 45: 839–854.Google Scholar
  14. Livingstone K.D., Lackney V.K., Blauth J., Wijk V.R. and Jahn M.M. 1999. Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152: 1183–1202.Google Scholar
  15. Lombard V. and Delourme R. 2001. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor. Appl. Genet. 103: 491–507.Google Scholar
  16. Michelmore R.W., Paran I. and Kesseli R. 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828–9832.Google Scholar
  17. van Ooijen J.W. 1994. Draw Map: a computer program for drawing genetic linkage maps. J. Hered. 85: 66.Google Scholar
  18. Paterson A.H., Bowers J.E., Burow M.D., Draye X., Elsik C.G., Jiang C-.X., Katsar C.S., Lan T-.H., Lin Y-.R., Ming R. and Wright R.J. 2000. Comparative Genomics of Plant Chromosomes. Plant Cell 12: 1523–1540.Google Scholar
  19. Peleman J., van Wijk R., van Oeveren J. and van Schaik R. 2000. Linkage map integration: an integrated genetic map of Zea mays L. Poster P472. Plant and Animal Genome Conference VIII, SanDiego, California, USA.Google Scholar
  20. Prince J.P., Pochard E. and Tanksley S.D. 1993. Construction of molecular linkage map of pepper and a comparison of synteny with tomato. Genome 36: 404–417.Google Scholar
  21. Qi X., Stam P. and Lindhout P. 1998. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor. Appl. Genet. 96: 376–384.Google Scholar
  22. Rao G.U., Ben Chaim A., Borovsky E. and Paran I. 2003. Mapping of yield related QTLs in pepper in an inter-specific cross of Capsicum annuum and C. frutescens. Theor. Appl. Genet. 106: 1457–1466.Google Scholar
  23. Rouppe van der Voort J., van Zandvoort P., van Eck H.J., Folkertsma R., Hutten R., Draaistra J., Gommers F., Jacobsen E., Helder J. and Bakker J. 1997. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol. Gen. Genet. 255: 438–447.Google Scholar
  24. Sebastian R.L., Howell E.C., Kink G.J., Marshall D.F. and Kearsey M.J. 2000. An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor. Appl. Genet. 100: 75–81.Google Scholar
  25. Tanksley S.D., Bernatzky R., Lapitan N.L. and Prince J.P. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. 85: 6419–6423.Google Scholar
  26. Thabuis A., Palloix A., Pflieger S., Daubeze A.M., Caranta C. and Lefebvre V. 2003. Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across solanaceae and for a large genetic diversity. Theor. Appl. Genet. 106: 1473–1485.Google Scholar
  27. Thorup T.A., Tanyolac B., Livingstone K.D., Popovsky S., Paran I. and Jahn M. 2000. Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. USA 97: 11192–11197.Google Scholar
  28. Vuylsteke M., Mank R., Antonise R., Bastiaanse E., Senior M.L., Stuber C.W., Melchinger A.E., Lübberstedt T., Xia X.C., Stam P., Zabeau M. and Kuiper M. 1999. Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor. Appl. Genet. 99': 921–935.Google Scholar
  29. Waugh R., Bonar N., Baird E., Thomas B., Graner A., Hayes P., Powell W. 1997. Homology of AFLP products in three mapping populations of barley. Mol. Gen. Genet. 255: 311–321.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ilan Paran
    • 1
  • Jeroen Rouppe van der Voort
    • 2
  • Véronique Lefebvre
    • 3
  • Molly Jahn
    • 4
  • Laurie Landry
    • 4
  • Marco van Schriek
    • 2
  • Bahattin Tanyolac
    • 1
  • Carole Caranta
    • 3
  • Arnon Ben Chaim
    • 1
  • Kevin Livingstone
    • 4
  • Alain Palloix
    • 3
  • Johan Peleman
    • 2
  1. 1.Department of Plant Genetics and BreedingAgricultural Research Organization, The Volcani Center, Bet DaganIsrael
  2. 2.Keygene GeneticsWageningenThe Netherlands
  3. 3.Institut National de la Recherche Agronomique (INRA), Unité de Génétique et d'Amélioration des Fruits et Légumes, Domaine Saint-MauriceMontfavet CedexFrance
  4. 4.Department of Plant BreedingCornell UniversityIthacaUSA

Personalised recommendations