Molecular Breeding

, Volume 13, Issue 2, pp 113–124 | Cite as

Marker-assisted selection for the wide-spectrum resistance to root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material

  • Anne-Claire Lecouls
  • Véronique Bergougnoux
  • Maria-Jose Rubio-Cabetas
  • Nathalie Bosselut
  • Roger Voisin
  • Jean-Luc Poessel
  • Mireille Faurobert
  • Abel Bonnet
  • Georges Salesses
  • Elisabeth Dirlewanger
  • Daniel Esmenjaud
Article

Abstract

Prunus species express a more or less wide spectrum of resistance to root-knot nematodes (RKN) of the genus Meloidogyne. Among them, sources from Myrobalan plum (P. cerasifera) control all major and minor RKN species tested. In this outbreeding species, the clones P.2175 and P.2980 are heterozygous for the Ma single dominant gene and carry the alleles Ma1 and Ma3, respectively. Each allele confers a high-level resistance to the predominant RKN, M. arenaria, M. incognita and M. javanica and to the Florida isolate of an unknown Meloidogyne sp. which overcomes the resistance from peach and almond sources. The polymorphism of two coupling-phase SCAR markers tightly linked to Ma, SCAL19690 and SCAFLP2202, was evaluated within diverse diploid Prunus accessions. This material belongs to the subgenera Prunophora (Myrobalan and apricot) or Amygdalus (peach, almond and almond-peach) and includes the RKN resistance sources ‘Nemared’, ‘Alnem 1’ and ‘GF.557’. The alleles SCAL19690 and SCAFLP2202 were not present in three apricot cultivars (‘Moniqui’, ‘Luizet’ and ‘Stark Early Orange’) representative of the genetic diversity of this species and they segregated in an interspecific cross between P.2980 and apricot. These results suggest that apricot, reported as resistant to M. arenaria, M. incognita and M. javanica, and the Myrobalan plum might possess two different resistance systems. SCAL19690 and SCAFLP2202 were also absent from all tested Amygdalus material, whatever its resistance to RKN. Eight Myrobalan×Amygdalus segregating progenies including bispecific (P.2175 or P.2980×peach or almond) and trispecific (P.2175 or P.2980×almond-peach) hybrids were tested with the Florida isolate to identify individuals carrying the Ma resistance alleles. Both SCARs were then evaluated for segregation in these progenies to develop marker-assisted selection of Prunus interspecific rootstocks. SCAL19690 and SCAFLP2202 could be clearly detected and their tight linkage to Ma1 and Ma3 was confirmed. Consequently these SCARs appear to be powerful tools to screen for RKN resistance conferred by the Ma gene. They should also facilitate marker-assisted pyramiding of Ma with other resistance genes from the Amygdalus subgenus or from the botanically-related Armeniaca section.

Durable resistance Marker-assisted selection Resistance gene Root-knot nematode Rootstock SCAR marker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergougnoux V., Claverie M., Bosselut N., Lecouls A.C., Salesses G., Dirlewanger E. and Esmenjaud D. 2002. Marker-assisted selection of the Ma gene from Myrobalan plum for a complete-spectrum root-knot nematode (RKN) resistance in Prunus rootstocks. Acta Hortic 592: 223–228.Google Scholar
  2. Bernatsky R. and Mulcahy D.L. 1992. Marker-aided-selection in a backcross breeding program for resistance to chestnut blight in American chestnut. Can. J. For Res. 22: 1031–1035.Google Scholar
  3. Cook R. and Evans K. 1987. Resistance and tolerance. In: Brown R.H. and Kerry B.R. (eds), Principles and practice of nematode control in crops. Academic press, Marrickville, pp. 179–231.Google Scholar
  4. Esmenjaud D., Minot J.C. and Voisin R. 1996. Effect of durable inoculum pressure and high temperature on root-galling, nematode numbers and survival of Myrobalan plum genotypes (Prunus cerasifera) highly resistant to Meloidogyne spp. Fund. Appl. Nematol. 19: 85–90.Google Scholar
  5. Esmenjaud D., Minot J.C., Voisin R., Bonnet A. and Salesses G. 1996. Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum. Theor. Appl. Genet. 92: 873–879.Google Scholar
  6. Esmenjaud D., Minot J.C., Voisin R., Pinochet J. and Salesses G. 1994. Inter-and intraspecific resistance variability in Myrobalan plum, peach, and peach-almond rootstocks using 22 root-knot nematode populations. J. Am. Soc. Hortic Sci. 119: 94–100.Google Scholar
  7. Esmenjaud D., Minot J.C., Voisin R., Pinochet J., Simard M.H. and Salesses G. 1997. Differencial response to root-knot nematodes in Prunus species and correlative genetic implications. J. Nematol. 29: 370–380.Google Scholar
  8. Esmenjaud D., Scotto La Massese C., Salesses G., Minot J.C. and Voisin R. 1992. Method and criteria to evaluate resistance to Meloidogyne arenaria in Prunus cerasifera Ehr. Fund. Appl. Nematol. 15: 385–389.Google Scholar
  9. Fargette M., Phillips M.S., Block V.C., Waugh R. and Trudgill D.L. 1996. An RFLP study of relationships between species, populations, and resistance breaking lines of tropical Meloidogyne. Fund. Appl. Nematol. 19: 193–200.Google Scholar
  10. Faust M., Suranyi D. and Nyujto F. 1998. Origin and dissemination of apricot. Horticultural Reviews 22: 225–266Google Scholar
  11. Fernandez C., Pinochet J., Esmenjaud D., Salesses G. and Felipe A. 1994. Resistance among new Prunus rootstocks and selections to the root-knot nematodes in Spain and France. Hort-Science 29: 1064–1067.Google Scholar
  12. Janati A., Bergé J.B., Triantaphyllou A.C. and Dalmasso A. 1982. Nouvelles données sur l'utilisation des isoestérases pour l'identification des Meloidogyne. Rev. Nématol 5: 147–154.Google Scholar
  13. Jauregui B. 1998. Localizacion de marcadores moleculares ligados a caracteres agronomicos en un cruzamiento interespecifico almendro×melocotonero. PhD Thesis. University of Barcelona, Spain.Google Scholar
  14. Johnson R. 1983. Genetic background of durable resistance. In: Lamberti F., Waller J.M. and Van der Graaff N.A. (eds), Durable resistance in crops. Plenum, New York.Google Scholar
  15. Joobeur T., Viruel M.A., De Vicente M.C., Jauregui B., Ballester J., Dettori M.T., Verde I., Troco M.J., Messeguer R., Battle I., Quarta R., Dirlewanger E. and Arus P. 1999. Construction of a saturated linkage map for Prunus using an almond_peach F2 progeny. Theor. Appl. Genet. 97: 1034–1041.Google Scholar
  16. Kochba J. and Spiegel-Roy P. 1975. Inheritance to the root-knot nematode _Meloidogyne javanica Chitwood× in bitter almond progenies. Euphytica 24: 453–457.Google Scholar
  17. Kumar L.S. 2000. DNA markers in plant improvement: pan overview. Biotechnology Advances 17: 143–182.Google Scholar
  18. Lecouls A.C. 2000. Spectre d'activité et marquage moléculaire du gène Ma1 contrôlant la résistance aux nématodes Meloidogyne chez le prunier myrobolan. PhD Thesis. University of Aix-Marseille II, France.Google Scholar
  19. Lecouls A.C., Rubio-Cabetas M.J., Minot J.C., Voisin R., Bonnet A., Salesses G., Dirlewanger E. and Esmenjaud D. 1999. RAPD and SCAR markers linked to the Ma1 root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor. Appl. Genet. 99: 328–336.Google Scholar
  20. Lecouls A.C., Salesses G., Minot J.C., Voisin R., Bonnet A. and Esmenjaud D. 1997. Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor. Appl. Genet. 85: 1325–1334.Google Scholar
  21. Lu Z.X., Reighard G.L., Nyczepir A.P., Beckman T.G. and Ramming D.W. 2000. Inheritance of resistance to root-knot nematodes in Prunus rootstocks. HortScience 35: 1344–1346.Google Scholar
  22. Lu Z.X., Sossey-Alaoui K., Reighard G.L., Baird W.V. and Abbott A.G. 1999. Development and characterization of a codominant marker linked to root-knot nematode resistance, and its application to peach rootstocks breeding. Theor. Appl. Genet. 99: 115–123.Google Scholar
  23. Michelmore R.W., Paran I. and Kesseli V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828–9832.Google Scholar
  24. Mohan M., Nair S., Bhagwar A., Krishna T.G., Yano M., Bhatia C.R. and Sasaki T. 1997. Genome mapping, molecular markers and marker-assisted selection in crops plants. Mol. Breeding 3: 87–103.Google Scholar
  25. Nyczepir A.P. and Halbrendt J.M. 1993. Nematode pests of deciduous fruit and nut trees. In: Evans K., Trudgill D.L. and Webster J.M. (eds), Plant parasitic nematodes in temperate agriculture, CAB, Oxon, pp. 381–425.Google Scholar
  26. Rammah A. and Hirschmann H. 1988. Meloidogyne mayaguensis n. sp. (Meloidogynidae), a root-knot nematode from Puerto Rico. J. Nematol 20: 58–69.Google Scholar
  27. Ramming D.W. and Cociu V. 1991. Plum (Prunus). In: Moore J.V., Ballington J.R. (eds), Genetic resources of temperate fruit and nut crops. Acta. Hortic. 290: 239–288.Google Scholar
  28. Rehder A. 1954. Manual of cultivated trees and shrubs. Second edition. Dioscorides Press, Portland.Google Scholar
  29. Roberts P.A. 1995. Conceptual and practical aspects of variability in root-knot nematodes related to host plant resistance. Ann. Rev. Phytopathol. 33: 199–221.Google Scholar
  30. Rom R.C. and Carlson R.F. 1987. Rootstocks for fruit crops. John Wiley and sons, New-York.Google Scholar
  31. Rubio-Cabetas M.J., Lecouls A.C., Salesses G., Bonnet A., Minot J.C., Voisin R. and Esmenjaud D. 1998. Evidence of a new gene for high resistance to Meloidogyne spp. in Myrobalan plum (Prunus cerasifera). Plant Breeding 117: 567–571.Google Scholar
  32. Rubio-Cabetas M.J., Minot J.C., Voisin R., Esmenjaud D., Salesses G. and Bonnet A. 1999. Response of the Ma genes from My-robalan plum to Meloidogyne hapla and M. mayaguensis. Hort-Science 34: 1266–1268.Google Scholar
  33. Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A. and Allard R.W. 1984. Ribosomal DNA spacer-lengh polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA 88: 8014–8018.Google Scholar
  34. Salesses G., Grasselly C. and Bernhard R. 1994. Utilisation des espèces indigènes et exotiques pour l'amélioration des Prunus cultivés, variétés et porte-greffe. C. R. Acad. Agric. Fr. 80: 77–88.Google Scholar
  35. Salesses G., Grasselly C., Renaud R. and Claverie J. 1993. Les porte-greffe des espèces fruitières à noyau du genre Prunus. In: Gallais A. and Bannerot H. (eds), Amélioration des espèces cul-tivées, INRA Editions, Paris, pp. 605–619.Google Scholar
  36. Scotto La Massese C., Grasselly C., Minot J.C. and Voisin R. 1984. Différence de comportement de 23 clones et hybrides de Prunus à l'égard de quatre espèces de Meloidogyne. Rev. Nématol. 7: 265–270.Google Scholar
  37. Sharpe R.H., Hesse C.O., Lownsbery B.F., Perry V.G. and Hansen C.J. 1969. Breeding peaches for the root-knot nematode resistance. J. Amer. Soc. Hort. Sci. 94: 209–212.Google Scholar
  38. Vidaud J. 1980. L'abricotier. Editions CTIFL INVUFLEC, Paris.Google Scholar
  39. Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Fritjers A., Pot J., Peleman J., Kuiper M. and Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids. Res. 23: 4407–4414.Google Scholar
  40. Weinberger J.H. 1975. Plums. In: Janick J. and Moore J.N. (eds), Advances in fruit breeding. Purdue University Press, West Lafayette, pp. 336–347.Google Scholar
  41. Weinberger J.H., Marth P.C. and Scott P.H. 1943. Inheritance study of root-knot nematode resistance in certain peach lines. Proc. Amer. Soc. Hort. Sci. 42: 321–325.Google Scholar
  42. Williams C.G. and Neale D.B. 2000. Conifer wood quality and marker-aided-selection: a case study. Can. J. For. Res. 22: 1009–1016.Google Scholar
  43. Yu K., Park S.J. and Poysa V. 2000. Marker-assisted selection of common beans for resistance to common bacterial blight: efficiency and economics. Plant Breeding 119: 411–415.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Anne-Claire Lecouls
    • 1
  • Véronique Bergougnoux
    • 1
  • Maria-Jose Rubio-Cabetas
    • 1
  • Nathalie Bosselut
    • 1
  • Roger Voisin
    • 1
  • Jean-Luc Poessel
    • 2
  • Mireille Faurobert
    • 2
  • Abel Bonnet
    • 3
  • Georges Salesses
    • 3
  • Elisabeth Dirlewanger
    • 3
  • Daniel Esmenjaud
    • 1
  1. 1.Unité ‘Interactions Plantes-Microorganismes et Santé Végétale’ (IPMSV), Equipe de Nématologie, Institut National de la Recherche Agronomique (INRA)Antibes CedexFrance
  2. 2.Unité de Génétique et Amélioration des Fruits et Légumes (UGAFL), INRAMontfavet CedexFrance
  3. 3.Unité de Recherche sur les Espèces Fruitières et la Vigne (UREFV), INRAVillenave d'Ornon CedexFrance

Personalised recommendations