Molecular Breeding

, Volume 13, Issue 1, pp 93–102 | Cite as

Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type

  • Christiane Gebhardt
  • Agim Ballvora
  • Birgit Walkemeier
  • Petra Oberhagemann
  • Konrad Schüler


Genetic diversity of crop plants resulting from breeding and selection is preserved in gene banks. Utilization of such materials for further crop improvement depends on knowledge of agronomic performance and useful traits, which is usually obtained by phenotypic evaluation. Associations between DNA markers and agronomic characters in collections of crop plants would (i) allow assessment of the genetic potential of specific genotypes prior to phenotypic evaluation, (ii) identify superior trait alleles in germplasm collections, (iii) facilitate high resolution QTL mapping and (iv) validate candidate genes responsible for quantitative agronomic characters. The feasibility of association mapping was tested in a gene bank collection of 600 potato cultivars bred between 1850 and 1990 in different countries. The cultivars were genotyped with five DNA markers linked to previously mapped QTL for resistance to late blight and plant maturity. Specific DNA fragments were tested for association with these quantitative characters based on passport evaluation data. Highly significant association with QTL for resistance to late blight and plant maturity was detected with PCR markers specific for R1, a major gene for resistance to late blight, and anonymous PCR markers flanking the R1 locus at 0.2 Centimorgan genetic distance. The marker alleles associated with increased resistance and later plant maturity were traced to an introgression from the wild species S. demissum. These DNA markers are the first marker that are diagnostic for quantitative agronomic characters in a large collection of cultivars.

Association mapping QTL Late blight Maturity Potato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angeli M., Klewsaat M., Vandrey M., Schüler K. 2000. Kulturkart-offelsortiment/ Collection of Potato Varieties. 52 pp., Wilde und kultivierte Kartoffelarten aus Mittel-und Südamerika/wild and cultivated potato species from Central and South America, 123 pp. Inventory for 2000, IPK-Genbank Auβenstelle Groβ Lüse-witz.Google Scholar
  2. Ballvora A., Ercolano M. R., Weiβ J., Meksem K., Bormann C., Oberhagemann P., Salamini F., Gebhardt C. 2002. The R1 gene for potato resistance to late blight (Phytophthora infestans) be-longs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal 30: 361–371.Google Scholar
  3. Collins A., Milbourne D., Ramsay L., Meyer R., Chatot-Balandras C., Oberhagemann P., De Jong W., Gebhardt C., Bonnel E., Waugh R. 1999. QTL for field resistance to late blight in potato are strongly correlated with earliness and vigour. Mol Breeding 5: 387–398.Google Scholar
  4. Debener T., Salamini F., Gebhardt C. 1990. Phylogeny of wild and cultivated Solanum species based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 79: 360–368.Google Scholar
  5. Gebhardt C., Valkonen J. P. T. 2001. Organization of genes control-ling disease resistance in the potato genome. Annu Rev Phyto-pathol 39: 79–102.Google Scholar
  6. Hanson W. D. 1959. The breakup of initial linkage blocks under se-lected mating systems. Genetics 44: 857–868.Google Scholar
  7. Kamoun S. 2001. Nonhost resistance to Phytophthora: novel pros-pects for a classical problem. Curr. Opin. Plant Biol. 4: 295–300.Google Scholar
  8. Kraft T., Hansen M., Nilsson N.-O. 2000. Linkage disequilibrium and fingerprinting in sugar beet. Theor. Appl. Genet. 101: 323–326.Google Scholar
  9. Lander E. S., Schork N. J. 1994. Genetic dissection of complex traits. Science 265: 2037–2048.Google Scholar
  10. Leonards-Schippers C., Gieffers W., Salamini F., Gebhardt C. 1992. The R1 gene conferring race-specific resistance to 101. Phytophthora infestans in potato is located on potato chromo-some V. Mol. Gen. Genet. 233: 278–283.Google Scholar
  11. Leonards-Schippers C., Gieffers W., Schäfer-Pregl R., Ritter E., Knapp S. J., Salamini F., Gebhardt C. 1994. Quantitative resis-tance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137: 67–77.Google Scholar
  12. Meksem K., Leister D., Peleman J., Zabeau M., Salamini F., Geb-hardt C. 1995. A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol. Gen. Genet. 249: 74–81.Google Scholar
  13. Oberhagemann P., Chatot-Balandras C., Bonnel E., Schäfer-Pregl R., Wegener D., Palomino C., Salamini F., Gebhardt C. 1999. A genetic analysis of quantitative resistance to late blight in po-tato: Towards marker assisted selection. Mol. Breeding 5: 399–415.Google Scholar
  14. Risch N. J. 2000. Searching for genetic determinants in the new millennium. Nature 405: 847–856.Google Scholar
  15. Ross H. 1986. Potato Breeding-Problems and Perspectives. J. Plant Breed. Suppl. 13.Google Scholar
  16. Salamini F., Özkan H., Brandolini A., Schäfer-Pregl R., Martin W. 2002. Genetics and geography of wild cereal domestication in the near east. Nature Reviews Genetics 3: 429–441.Google Scholar
  17. Schafer A. J., Hawkins J. R. 1998. DNA variation and the future of human genetics. Nature Biotechnology 16: 33–39.Google Scholar
  18. Steineck O. 1956. Tageslänge und Knollenbildung bei Kultursorten der Kartoffel. Z. für Pflanzenzüchtung 36: 197–213.Google Scholar
  19. Swiezynski K. M., Chrzanowska M., Domanski L., Zimnoch-Gu-zowska E. 2001. Comparison of resistance evaluation in potato variety assessment. Pot. Res. 44: 25–31.Google Scholar
  20. Swiezynski K. M., Haynes K. G., Hutten R. C. B., Sieczka M. T., Watts P., Zimnoch-Guzowska E. 1997. Pedigree of European and North-American potato varieties. Plant Breeding and Seed Science 41, Supplement no. 1.Google Scholar
  21. Thornsburry J. M., Goodman M. M., Doebley J., Kresovich S., Nielsen D., Buckler IV E. S. 2001. Dwarf8 polymorphisms asso-ciate with variation in flowering time. Nature Genetics 28: 286–289.Google Scholar
  22. Visker M. H. P. W., Keizer L. C. P., Van Eck H. J., Jacobsen E., Colon L. T., Struik P. C. 2003. Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor. Appl. Genet. 106: 317–325.Google Scholar
  23. Xiong M. I., Guo S. W. 1997. Fine-scale mapping of quantitative trait loci using historical recombinations. Genetics 145: 1201–1218.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Christiane Gebhardt
    • 1
  • Agim Ballvora
    • 1
  • Birgit Walkemeier
    • 1
  • Petra Oberhagemann
    • 1
  • Konrad Schüler
    • 2
  1. 1.Max-Planck-Institute for Plant Breeding ResearchCologneGermany(phone
  2. 2.IPK Gatersleben, Genbank Außenstelle NordGroß LüsewitzGermany

Personalised recommendations