Molecular Breeding

, Volume 13, Issue 1, pp 103–112 | Cite as

A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed

  • J. Messeguer
  • V. Marfà
  • M.M. Català
  • E. Guiderdoni
  • E. Melé
Article

Abstract

The objective of this study was to assess the frequency of pollen-mediated gene flow from a transgenic rice line, harbouring the gusA and the bar genes encoding respectively, β-glucuronidase and phosphinothricin acetyl transferase as markers, to the red rice weed and conventional rice in the Spanish japonica cultivar Senia. A circular field trial design was set up to investigate the influence of the wind on the frequency of pollination of red rice and conventional rice recipient plants with the transgenic pollen. Frequencies of gene flow based on detection of herbicide resistant, GUS positive seedlings among seed progenies of recipient plants averaged over all wind directions were 0.036 ± 0.006% and 0.086 ± 0.007 for red rice and conventional rice, respectively. However, for both red rice and conventional rice, a clear asymmetric distribution was observed with pollination frequency favoured in plants placed under the local prevailing winds. Southern analyses confirmed the hemizygous status and the origin of the transgenes in progenies of surviving, GUS positive plants. Gene flow detected in conventional rice planted at 1, 2, 5 and 10 m distance revealed a clear decrease with increasing distance which was less dramatic under the prevailing wind direction. Consequences of these findings for containment of gene flow from transgenic rice crops to the red rice weed are discussed. The precise determination of the local wind conditions at flowering time and pollination day time appear to be of primary importance for setting up suitable isolation distances.

Gene flow Herbicide resistance Oryza sativa L. Red rice Risk assessment Transgenic rice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bres-Patry C., Bangratz M. and Ghesquière M. 2002. Genetic diversity and population dynamics of weedy rice in France. In Proc. Eurorice 2001 symposium, Cirad, Ird, KSAU, 3–8 September 2001, Krasnodar, Russia, pp. 153–162.Google Scholar
  2. Bres-Patry C., Lorieux M., Clément G., Bangratz M. and Ghesquière A. 2001. Heredity and genetic mapping of domesti-cation-related traits in a temperate japonica weedy rice. Theor. Appl. Genet., 102: 118–126.Google Scholar
  3. Cho Y. C., Chung T. Y. and Suh H. S. 1995. Genetic characteristics of Korean weedy rice (Oryza sativa L.) by RFLP analysis. Eu-phytica 86: 103–110.Google Scholar
  4. Doyle J. J. and Doyle J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  5. Ellstrand N. C., Prentice H. C. and Hancock J. F. 1999. Gene flow and introgression from domesticated plants into their wild rela-tives. Annu. Rev. Ecol. Syst. 30: 539–563.Google Scholar
  6. FAOSTAT Database 2003. FAO Rome 21 May 2003.Google Scholar
  7. Hood E., Stantom B., Gelvin, Melchers L. S. and Hoekema A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research 2: 208–218.Google Scholar
  8. Jefferson R. A., Kavanagh T. A. and Bevan M. W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907.Google Scholar
  9. Khush G. S. 1993. Floral Structure, Pollination Biology, Breeding Behaviour, Transfer Distance and Isolation Considerations. World Bank Technical Paper. Biotechnology Series N° 1. Rice Biosafety. The Rockefeller Foundation, USA.Google Scholar
  10. Langevin S. A., Clay K. and Grace J. B. 1990. The incidence and effects of hybridisation between cultivated rice and its related weed red rice (Oryza sativa L). Evolution 44: 1000–1008.Google Scholar
  11. Messeguer J., Fogher C., Guiderdoni E., Marfà V., Català M. M., Baldi G. and Melé E. 2001. Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor. Appl. Genet. 103: 1151–1159.Google Scholar
  12. Noldin J. A., Chandler J. M. and McCauley G. N. 1999. Red rice (Oryza sativa) Biology. I. Characterization of Red rice Ecotypes. Weed Technology 13: 12–18.Google Scholar
  13. Oard J. H., Linscombe S. D., Braverman M. P., Jodari F., Blouin D. C., Leech M., Kohli A., Vain P., Cooley J. C. and Christou P. 1996. Development, field evaluation, and agronomic perform-ance of transgenic herbicide resistant rice. Mol Breeding 2(4): 359–368.Google Scholar
  14. Oard J., Cohn M. A., Linscombe S., Gealy D. and Gravois K. 2000. Field evaluation of seed production, shattering and dormancy in hybrid populations of transgenic rice (Oryza sativa) and the weed, red rice (Oryza sativa). Plant Science 157: 12–22.Google Scholar
  15. Oka H. I. 1988. Weedy forms of rice. In: Origin of cultivated rice. Elsevier and Japan Society Press, Amsterdam and Tokyo, pp. 107–114.Google Scholar
  16. Pons M. J., Marfà V., Melé E. and Messeguer J. 2000. Regenera-tion and genetic transformation of spanish rice cultivars using mature embryos. Euphytica 114: 117–122.Google Scholar
  17. Second G 1985. Evolutionary relationship in the Sativa group of Oryza based on isozyme data. Genet. Sel. Evol. 17: 89–114.Google Scholar
  18. Suh H. S., Sato Y. I. and Morishima H. 1997. Genetic characterisa-tion of weedy rice (Oryza sativa L.) based on morpho-physiol-ogy, isozymes and RAPD markers. Theor. Appl. Genet. 94: 316–321.Google Scholar
  19. Tu J., Datta K., Khush G. S., Zhang Q. and Datta S. K. 2000. Field performance of Xa21 transgenic indica rice (Oryza sativa L), IR72. Theor. Appl. Genet. 101(1–2): 15–20.Google Scholar
  20. Tu J., Zhang G., Datta K., Xu C., He Y., Zhang Q., Khush G. S. and Datta K. 2000b. Field performance of transgenic elite com-mercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nature Biotech 18: 1101–1104.Google Scholar
  21. Tyagi A. K. and Mohanty A. 2000. Rice transformation for crop improvement and functional genomics. Plant Science (Shannon, Ireland) 158(1–2): 1–18.Google Scholar
  22. Van Altvorst A. C., Riksen T., Koehorst H. and Dons H. J. M. 1995. Transgenic carnations obtained by Agrobacterium tumefaciens-mediated transformation of leaf explants. Transgenic Research 4: 105–113.Google Scholar
  23. Watson G. S. 1962. Goodness of fit tests on a circle, II. Biometrika 43: 344–352.Google Scholar
  24. Wheeler C. C., Gealy D. and TeBeest D. O. 2000. Bar gene transfer from transgenic rice (Oryza sativa) to red rice (Oryza sativa). In: Wells B. R., (ed.), Ongoing studies: breeding, genetics and Physiology. AAES Research Series, pp. 33–36.Google Scholar
  25. Xiong L. Z., Liu K. D., Dai X. K., Xu C. G. and Zhang Q. 1999. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor. Appl. Genet., 98: 243–251.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Messeguer
    • 1
  • V. Marfà
    • 1
  • M.M. Català
    • 2
  • E. Guiderdoni
    • 3
  • E. Melé
    • 1
  1. 1.Departament de Genètica VegetalCentre de Cabrils, IRTABarcelonaSpain
  2. 2.Estació Experimental del Delta de l'EbreTarragonaSpain
  3. 3.Biotrop programCirad-Amis, TA40/03Montpellier Cedex 5France

Personalised recommendations