Molecular Diversity

, Volume 8, Issue 2, pp 101–111

New transport peptides broaden the horizon of applications for peptidic pharmaceuticals

  • J. P. M. Langedijk
  • T. Olijhoek
  • D. Schut
  • R. Autar
  • R. H. Meloen
Article
  • 104 Downloads

Abstract

Protein transduction domains (PTDs) have proven to be an invaluable tool to transduce a wide variety of cargo's including peptides across the plasma membrane and into intact tissue. The PTDs are able to deliver biologically active molecules both in vitro and in vivo. This study describes many new polybasic PTDs of which some are just as potent as the PTDs derived from extracellular RNAses or other published PTDs. Large differences in potency became apparent when the PTDs are coupled to particular cargoes. Therefore, the unique characteristic of a PTD may only become apparent when it is selected for a particular application. Rules for optimization of PTDs for particular applications are now emerging and open the way for a new generation of drug delivery agents. Because fixation artifacts and irreversible membrane binding may cause misinterpretation of the amount of internalization of polybasic peptides, we have developed an enzyme transduction assay based on the intracellular loading of a cell permeable substrate. In this assay, a fluorescent signal is generated by internalized enzyme in intact cells and not by membrane-bound or extracellular enzyme.

CPP Erns protein transduction PTD Tat transport peptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindgren, M., Hallbrink, M., Prochiantz, A. and Langel, U., Cellpenetrating peptides, Trends Pharmacol. Sci., 21 (2000) 99–103.PubMedGoogle Scholar
  2. 2.
    Futaki, S., Goto, S., Suzuki, T., Nakase, I. and Sugiura, Y., Structural variety of membrane permeable peptides, Curr. Prot. Pept. Sci., 4 (2003) 87–96.Google Scholar
  3. 3.
    Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G. and Prochiantz, A., Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent, J. Biol. Chem., 271 (1996) 18188.PubMedGoogle Scholar
  4. 4.
    Vives, E., Brodin, P. and Lebleu, B., A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus, J. Biol. Chem., 272 (1997) 16010–16017.PubMedGoogle Scholar
  5. 5.
    Langedijk, J. P., Translocation Activity of C-terminal Domain of Pestivirus Erns and Ribotoxin L3 Loop, J. Biol. Chem., 277 (2002) 5308–5314.PubMedGoogle Scholar
  6. 6.
    Mai, J. C., Shen, H. M., Watkins, S. C., Cheng, T. and Robbins, P. D., Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate, J. Biolog. Chem., 277 (2002) 30208–30218.Google Scholar
  7. 7.
    Belting, M., Heparan sulfate proteoglycan as a plasma membrane carrier, Trends Biochem. Sci., 28 (2003) 145–151.PubMedGoogle Scholar
  8. 8.
    Prochiantz, A., Messenger proteins: Homeoproteins, TAT and others, Curr. Opinion Cell Biol., 12 (2000) 400–406.PubMedGoogle Scholar
  9. 9.
    Schwarze, S. R., Hruska, K. A. and Dowdy, S. F., Protein transduction: Unrestricted delivery into all cells?, Trends Cell Biol., 10 (2000) 290–295.PubMedGoogle Scholar
  10. 10.
    Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., Chernomordik, L. V. and Lebleu, B., Cell-penetrating peptides — A reevaluation of the mechanism of cellular uptake, J. Biolog. Chem., 278 (2003) 585–590.Google Scholar
  11. 11.
    Lundberg, M. and Johansson, M., Positively charged DNA-binding proteins cause apparent cell membrane translocation, Biochem. Biophys. Res. Commun., 291 (2002) 367–371.PubMedGoogle Scholar
  12. 12.
    Cilley, C. D. and Williamson, J. R., Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE), RNA, 3 (1997) 57–67.PubMedGoogle Scholar
  13. 13.
    Feldman, S. A., Hendry, R. M. and Beeler, J. A., Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G, J. Virol., 73 (1999) 6610–6617.PubMedGoogle Scholar
  14. 14.
    Krusat, T. and Streckert, H. J., Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells, Arch. Virol., 142 (1997) 1247–1254.PubMedGoogle Scholar
  15. 15.
    Nakielny, S. and Dreyfuss, G., Transport of proteins and RNAs in and out of the nucleus, Cell, 99 (1999) 677–690.PubMedGoogle Scholar
  16. 16.
    Portes-Sentis, S., Manet, E., Gourru, G., Sergeant, A. and Gruffat, H., Identification of a short amino acid sequence essential for efficient nuclear targeting of the Kaposi's sarcoma-associated herpesvirus/ human herpesvirus-8 K8 protein, J. Gen. Virol., 82 (2001) 507–512.PubMedGoogle Scholar
  17. 17.
    Tan, R., Chen, L., Buettner, J. A., Hudson, D. and Frankel, A. D., RNA recognition by an isolated alpha helix, Cell, 73 (1993) 1031–1040.PubMedGoogle Scholar
  18. 18.
    Hahn, C. S., Lustig, S., Strauss, E. G. and Strauss, J. H., Western equine encephalitis virus is a recombinant virus, Proc. Natl. Acad. Sci. USA, 85 (1988) 5997–6001.PubMedGoogle Scholar
  19. 19.
    Kaesberg, P., Dasgupta, R., Sgro, J. Y., Wery, J. P., Selling, B. H., Hosur, M. V. and Johnson, J. E., Structural homology among four nodaviruses as deduced by sequencing and X-ray crystallography, J. Mol. Biol., 214 (1990) 423–435.PubMedGoogle Scholar
  20. 20.
    Park, C. B., Yi, K.-S., Matsuzaki, K., Kim, M. S. and Kim, S. C., Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cellpenetrating ability of buforin II, PNAS, 97 (2000) 8245–8250.PubMedGoogle Scholar
  21. 21.
    Pooga, M., Kut, C., Kihlmark, M., Hallbrink, M., Fernaeus, S., Raid, R., Land, T., Hallberg, E., Bartfai, T. and Langel, U., Cellular translocation of proteins by transportan, Faseb J., 15 (2001) 304–316.Google Scholar
  22. 22.
    Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K. and Sugiura, Y., Arginine-rich peptides — An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery, J. Biolog. Chem., 276 (2001) 5836–5840.Google Scholar
  23. 23.
    Futaki, S., Nakase, I., Suzuki, T., Zhang, Y. J. and Sugiura, Y., Translocation of branched-chain arginine peptides through cell membranes: Flexibility in the spatial disposition of positive charges in membrane-permeable peptides, Biochemistry, 41 (2002) 7925–7930.PubMedGoogle Scholar
  24. 24.
    Wright, L. R., Rothbard, J. B. and Wender, P. A., Guanidinium rich peptide transporters and drug delivery, Curr. Prot. Pept. Sci., 4 (2003) 105–124.Google Scholar
  25. 25.
    Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B. and Barsoum, J., Tat-mediated delivery of heterologous proteins into cells, Proc. Natl. Acad. Sci. USA, 91 (1994) 664–668.PubMedGoogle Scholar
  26. 26.
    Wender, P. A., Mitchell, D. J., Pattabiraman, K., Pelkey, E. T., Steinman, L. and Rothbard, J. B., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters, Proc. Natl. Acad. Sci. USA, 97 (2000) 13003–13008.PubMedGoogle Scholar
  27. 27.
    Rothbard, J. B., Kreider, E., Vandeusen, C. L., Wright, L., Wylie, B. L. and Wender, P. A., Arginine-rich molecular transporters for drug delivery: Role of backbone spacing in cellular uptake, J. Medicinal Chem., 45 (2002) 3612–3618.Google Scholar
  28. 28.
    Fischer, R., Waizenegger, T., Kohler, K. and Brock, R., A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: Fluorophore and cargo dependence of import, Biochim. Biophys. Acta (BBA) — Biomembranes, 1564 (2002) 365–374.Google Scholar
  29. 29.
    Hallbrink, M., Floren, A., Elmquist, A., Pooga, M., Bartfai, T. and Langel, U., Cargo delivery kinetics of cell-penetrating peptides, Biochim. Biophys. Acta, 1515 (2001) 101–109.PubMedGoogle Scholar
  30. 30.
    Drin, G., Mazel, M., Clair, P., Mathieu, D., Kaczorek, M. and Temsamani, J., Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity, Eur. J. Biochem., 268 (2001) 1304–1314.PubMedGoogle Scholar
  31. 31.
    Lundberg, M., Wikstrom, S. and Johansson, M., Cell surface adherence and endocytosis of protein transduction domains, Molecular Ther., 8 (2003) 143–150.Google Scholar
  32. 32.
    Lindsay, M. A., Peptide-mediated cell delivery: Application in protein target validation, Curr. Opin. Pharmacol., 2 (2002) 587–594.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. P. M. Langedijk
    • 1
  • T. Olijhoek
    • 1
  • D. Schut
    • 1
  • R. Autar
    • 1
  • R. H. Meloen
    • 1
  1. 1.Pepscan Systems B.V.LelystadThe Netherlands

Personalised recommendations