Importance of Sulfate Aerosol in Evaluating the Relative Contributions of Regional Emissions to the Historical Global Temperature Change

  • Natalia AndronovaEmail author
  • Michael Schlesinger


During the negotiations of the KyotoProtocol the delegation of Brazil presentedan approach for distributing the burden ofemissions reductions among the Partiesbased on the effect of their cumulativehistorical emissions on the global-averagenear-surface temperature. The Letter tothe Parties does not limit the emissions tobe considered to be only greenhouse gas(GHG) emissions. Thus, in this paper weexplore the importance of anthropogenicSOx emissions that are converted tosulfate aerosol in the atmosphere, togetherwith the cumulative greenhouse gasemissions, in attributing historicaltemperature change. We use historicalemissions and our simple climate model toestimate the relative contributions toglobal warming of the regional emissions byfour Parties: OECD90, Africa and LatinAmerica, Asia, and Eastern Europe and theFormer Soviet Union. Our results show thatfor most Parties the large warmingcontributed by their GHG emissions islargely offset by the correspondingly largecooling by their SOx emissions. Thus,OECD90 has become the dominant contributorto recent global warming following itslarge reduction in SOx emissions after1980.

global warming greenhouse gases regional emissions sulfate aerosol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andronova, N.G. and Schlesinger, M.E.: 2000, 'Causes of global temperature changes during the 19th and 20th centuries', Geophys. Res. Lettr. 27(14), 2137–2140.Google Scholar
  2. Andronova, N.G. and Schlesinger, M.E.: 2001, 'Objective estimation of the probability density function for climate sensitivity', J. Geophys. Res. 106(D19), 22,605–22,612.Google Scholar
  3. Den Elzen, M. and Schaeffer, M.: 2002, 'Responsibility for past and future global warming: Uncertainties in attributing anthropogenic climate change', Climatic Change 54(1-2), 29–73.Google Scholar
  4. Harvey, L.D.D., Gregory, J., Hoffert, M., Jain, A., Lal, M., Leemans, R., Raper, S.B.C., Wigley, T.M.L. and de Wolde, J.: 1997: 'An introduction to simple climate models used in the IPCC Second Assessment Report', Intergovernmental Panel on Climate Change, Bracknell, U.K., pp. 50.Google Scholar
  5. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van den Linden, P.J. and Xiaosu, D.: 2001, Climate Change: The Scientific Basis, Cambridge, UK, Cambridge University Press, 944 pp.Google Scholar
  6. Jones, P., New, M., Parker, D.E., Martin, S. and Rigor, I.G.: 1999, 'Surface air temperature and its changes over the past 150 years', Rev. Geophys. 37(2), 173–199.Google Scholar
  7. Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T.Y., Kram, T., Rovere, E.L.L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N. and Dadi, Z.: 2000, Special Report on Emissions Scenarios, a Special Report of the Intergovernmental Panel on Climate Change, Cambridge, Cambridge University Press, 570 pp.Google Scholar
  8. Schlesinger, M.E., Malyshev, S., Rozanov, E.V., Yang, F., Andronova, N.G., de Vries, B., Grübler, A., Jiang, K., Masui, T., Morita, T., Penner, J., Pepper, W., Sankovski, A. and Zhang, Y.: 2000: 'Geographical distributions of temperature change for scenarios of greenhouse gas and sulfur dioxide emissions', Technol. Forecast. & Soc. Change 65, 167–193.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Climate Research Group, Department of Atmospheric SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations