The Role of Fungal Symbioses in the Adaptation of Plants to High Stress Environments

  • Russell J. RodriguezEmail author
  • Regina S. Redman
  • Joan M. Henson


All plants studied in natural ecosystemsare symbiotic with fungi that either resideentirely (endophytes) or partially(mycorrhizae) within plants. Thesesymbioses appear to adapt to biotic andabiotic stresses and may be responsible forthe survival of both plant hosts and fungalsymbionts in high stress habitats. Here wedescribe the role of symbiotic fungi inplant stress tolerance and present astrategy based on adaptive symbiosis topotentially mitigate the impacts of globalchange on plant communities.

adaptation Colletotrichum mutualism symbiosis stress tolerance endophyte fungi mycorrhizae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Karaki, G.N., Hammad, R. and Rusan, M.: 2001, ‘Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress’, Mycorrhiza 11, 43–47.Google Scholar
  2. Auge, R.M.: 2000, ‘Stomatal behavior of arbuscular mycorrhizal plants’, in Y. kapulnik and D.D. Douds (eds.), Arbuscular Mycorrhizas: Physiology and Function, Dordrecht, Kluwer Academic Publishers, pp. 201–236.Google Scholar
  3. Bacon, C.W. and Hill, N.S.: 1996, ‘Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses’, in S.C. Redkin and L.M. Carris (eds.), Endophytic Fungi in Grasses and Woody Plants, St. Paul, APS Press, pp. 155–178.Google Scholar
  4. Blee, K.A. and Anderson, A.J.: 2000, ‘Defense responses in plants to arbuscular mycorrhizal fungi’, in G.K. Podila and D.D. Douds (eds.), Current Advances in Mycorrhizal Research, St. Paul, APS Press, pp. 27–44.Google Scholar
  5. Bray, E.A.: 1993, ‘Alterations in gene expression in response to water deficit’, in A.S. Basra (ed.), Stress-Induced Gene Expression in Plants, Chur, Harwood Academic Publishers GmbH, pp. 1–23.Google Scholar
  6. Clay, K. and Holah, J.: 1999, ‘Fungal endophyte symbiosis and plant diversity in successional fields’, Science 285, 1742–1744.Google Scholar
  7. Clay, K. and Schardl, C.: 2002, ‘Evolutionary origins and ecological consequences of endophyte symbiosis with grasses’, The American Naturalist 160, Supplement, S99-S127.Google Scholar
  8. Dangl, J.L., Dietrich, R.A. and Richberg, M.H.: 1996, ‘Death don't have no mercy: cell death programs in plant-microbe interactions’, Plant cell 8, 1793–1807.Google Scholar
  9. De Bary, A.: 1879, ‘Die Erschenung Symbiose’, in K.J. Trubner (ed.), Vortrag auf der Versammlung der Naturforscher und Artze zu Cassel, Strassburg, pp. 1–30.Google Scholar
  10. Duchesne, L.C.: 1996, ‘Role of ectomycorrhizal fungi in biocontrol’, in F.L. Pfleger and R.G. Linderman (eds.), Mycorrhizae And Plant Health, St. Paul, APS Press, pp. 27–46.Google Scholar
  11. Francis, R. and Read, D.J.: 1995, ‘Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure’, Can. J. Botany 73, S1301–S1309.Google Scholar
  12. Freeman, S. and Rodriguez, R.J.: 1993, ‘Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist’, Science 260, 75–78.Google Scholar
  13. Gilbert, G.S., Mejia-Chang, M. and Rojas, E.: 2002, ‘Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism’, Oecologia 132, 278–285.Google Scholar
  14. Graham, J.H. and Eissenstat, D.M.: 1998, ‘Field evidence for the carbon cost of citrus mycorrhizas’, New Phytol. 140, 103–110.Google Scholar
  15. Griffiths, H. and Parry, M.A.J.: 2002, ‘Plant responses to water stress’, Ann. Botany 89, 801–802.Google Scholar
  16. Hammerschmidt, R., Lamport, D.T.A. and Muldoon, E.P.: 1984, ‘Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladisporium cucumerinum’, Physiol. Plant Pathol. 24, 43–47.Google Scholar
  17. Hammerschmidt, R., Nuckles, E.M. and Kuc, J.: 1982, ‘Association of enhanced peroxidase activity and induced systemic resistance of cucumber to Colletotrichum lagenarium’, Physiol. Plant Pathol. 20, 73–82.Google Scholar
  18. Hertig, M., Taliaferro, W.H. and Schwartz, B.: 1937, ‘The terms symbiosis, symbiont and symbiote’, J. Parasitology 23, 326–329.Google Scholar
  19. Iba, K.: 2002, ‘Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance’, Ann. Rev. Plant Biol. 53, 225–245.Google Scholar
  20. Johnson, N.C., Graham, J.H. and Smith, F.A.: 1997, ‘Functioning of mycorrhizal associations along the mutualism-parasitism continuum’, New Phytol. 135, 575–586.Google Scholar
  21. Kuc, J. and Strobel, N.E.: 1992, ‘Induced resistance using pathogens and nonpathogens’, in E.S. Tjamos (ed.), Biological Control of Plant Diseases, New York, Plenum Press, pp. 295–303.Google Scholar
  22. Latch, G.C.M.: 1993, ‘Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes’, Agric. Ecosyst. & Envir. 44, 143–156.Google Scholar
  23. Lewis, D.H.: 1985, ‘Symbiosis and mutualism: Crisp concepts and soggy semantics’, in D.H. Boucher (ed.), The Biology of Mutualism, London, Croom Helm Ltd, pp. 29–39.Google Scholar
  24. Malinowski, D.P. and Belesky, D.P.: 2000, ‘Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance’, Crop Sci. 40, 923–940.Google Scholar
  25. Marks, S. and Clay, K.: 1990, ‘Effects of CO2 enrichment, nutrient addition, and fungal endophyteinfection on the growth of two grasses’, Oecologia 84, 207–214.Google Scholar
  26. Morton, J.B.: 2000, ‘Biodiversity and evolution in mycorrhizae in the desert’, in C.W. Bacon and J.F.J. White (eds.), Microbial Endophytes, New York, NY, Marcel Dekker, Inc., pp. 3–30.Google Scholar
  27. Murray, M.: 1997, Carbon Dioxide and Plant Responses, Somerset: Research Studies Press LTD., pp. 275.Google Scholar
  28. Parry, M.: 1990, Climate Change and World Agriculture, London: Earthscan Publications Ltd., pp. 157.Google Scholar
  29. Petrini, O.: 1986, ‘Taxonomy of endophytic fungi of aerial plant tissues’, in N.J. Fokkema and J. van den Heuvel (eds.), Microbiology of the Phyllosphere, Cambridge, Cambridge University Press, pp. 175–187.Google Scholar
  30. Pirozynski, K.A. and Malloch, D.W.: 1975, ‘The origin of land plants a matter of mycotrophism’, Biosystems 6, 153–164.Google Scholar
  31. Read, D.J.: 1999, ‘Mycorrhiza - the state of the art’, in A. Varma and B. Hock (eds.), Mycorrhiza, Berlin, Springer-Verlag, pp. 3–34.Google Scholar
  32. Redecker, D., Kodner, R. and Graham, L.E.: 2000, ‘Glomalean fungi from the Ordovician’, Science 289, 1920–1921.Google Scholar
  33. Redman, R.S., Ranson, J. and Rodriguez, R.J.: 1999a, ‘Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic endophytic mutualist by gene disruption’, Mol. Plant Micr. Int. 12, 969–975.Google Scholar
  34. Redman, R.S., Dunigan, D.D. and Rodriguez, R.J.: 2001, ‘Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol. 151, 705–716.Google Scholar
  35. Redman, R.S., Sheehan, K.B., Stout, R.G., Rodriguez, R.J. and Henson, J.M.: 2002a, ‘Thermotolerance Conferred to Plant Host and Fungal Endophyte During Mutualistic Symbiosis’, Science 298, 1581.Google Scholar
  36. Redman, R.S., Freeman, S., Clifton, D.R., Morrel, J., Brown, G. and Rodriguez, R.J.: 1999, ‘Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna’, Plant Physiol. 119, 795–804.Google Scholar
  37. Redman, R.S., Roossinck, M.J., Maher, S., Andrews, Q.C., Schneider, W.L. and Rodriguez, R.J.: 2002b, ‘Field performance of cucurbit and tomato plants colonized with a nonpathogenic mutant of Colletotrichum magna (teleomorph: Glomerella magna; Jenkins andWinstead), Symbiosis 32, 55–70.Google Scholar
  38. Remy, W., Taylor, T.N., Hass, H. and Kerp, H.: 1994, ‘Four hundred-million-year-old vesicular arbuscular mycorrhizae’, Proc. Nat. Academy of Science 91, 11841–11843.Google Scholar
  39. Rodriguez, R.J. and Redman, R.S.: 1997, ‘Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes’, Adv. Bot. Res. 24, 169–193.Google Scholar
  40. Ruiz-Lozano, J.M., Azcon, R. and Gomez, M.: 1996, ‘Alleviation of salt stress by arbuscularmycorrhizal Glomus species in Lactuca sativa plants’, Physiologia Plantarum 98, 767–772.Google Scholar
  41. Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y. and Hunt, M.D.: 1996, ‘Systemic acquired resistance’, The Plant Cell 8, 1809–1819.Google Scholar
  42. Sairam, R.K., Rao, K.V. and Srivastava, G.C.: 2002, ‘Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration’, Plant Sci. 163, 1037–1046.Google Scholar
  43. Schulz, B., Rommert, A.K., Dammann, U., Aust, H.J. and Strack, D.: 1999, ‘The endophyte-host interaction: a balanced antagonism? Mycol. Res. 10, 1275–1283.Google Scholar
  44. Shinozaki, K. and Yamaguchi-Shinozaki, K.: 1998, ‘Molecular responses to drought stress’, in K. Satoh and N. Murata (eds.), Stress Responses of Photosynthetic Organisms: Molecular Mechanisms and Molecular Regulations, Amsterdam, Elsvevier Science B.V., pp. 149–163.Google Scholar
  45. Siegel, M.R. and Bush, L.P.: 1997, ‘Toxin production in grass/endophyte associations’, in G.C. Carroll and P. Tudzynski (eds.), The Mycota, Heidelberg, Springer-Verlag, pp. 185–207.Google Scholar
  46. Simon, L., Bousquet, J., Levesque, R.C. and Lalonde, M.: 1993, ‘Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants’, Nature 363, 67–69.Google Scholar
  47. Smallwood, M.F., Calvert, C.M. and Bowles, D.J.: 1999, Plant Responses to Environmental Stress, Oxford, BIOS Scientific Publishers Limited, pp. 224.Google Scholar
  48. Smith, K.P. and Goodman, R.M.: 1999, ‘Host variation for interactions with beneficial plant-associated microbes’, Ann. Rev. Phytopathol. 37, 473–492.Google Scholar
  49. Stout, R.G. and Al-Niemi, T.S.: 2002, ‘Heat-tolerance flowering plants of active geothermal areas in Yellowstone National Park’, Ann. Botany 90, 259–267.Google Scholar
  50. Ulloa, M. and Hanlin, R.T.: 2001, Illustrated Dictionary of Mycology, St. Paul, APS Press, pp. 448.Google Scholar
  51. Varma, A., Verma, S., Sudha, Sahay, N., Butehorn, B. and Franken, P.: 1999, ‘Piriformospora indica, a cultivable plant-growth-promoting root endophyte’, Appl. Envir. Microbiol. 65, 2741–2744.Google Scholar
  52. Yano-Melo, A.M., Saggin, O.J. and Maia, L.C.: 2003, ‘Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress’, Agric. Ecosyst. & Envir. 95, 343–348.Google Scholar
  53. Yeo, A.: 1998, ‘Molecular biology of salt tolerance in the context of whole-plant physiology’, J. Exper. Botany 49, 915–929.Google Scholar
  54. Yoshida, K., Kaothien, P., Matsui, T., Kawaoka, A. and Shinmyo, A.: 2003, ‘Molecular biology and application of plant peroxidase genes’, Appl. Microbiol. & Biotechnol. 60, 665–670.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Russell J. Rodriguez
    • 1
    • 2
    Email author
  • Regina S. Redman
    • 1
    • 2
    • 3
  • Joan M. Henson
    • 3
    • 4
  1. 1.U.S. Geological Survey, WFRCSeattle
  2. 2.Department of BiologyUniversity of WashingtonSeattle
  3. 3.Department of MicrobiologyMontana State UniversityBozeman
  4. 4.Thermal Biology InstituteMontana State UniversityBozeman

Personalised recommendations