Minds and Machines

, Volume 14, Issue 4, pp 485–505 | Cite as

Justification as Truth-Finding Efficiency: How Ockham's Razor Works

  • Kevin T. Kelly

Abstract

I propose that empirical procedures, like computational procedures, are justified in terms of truth-finding efficiency. I contrast the idea with more standard philosophies of science and illustrate it by deriving Ockham's razor from the aim of minimizing dramatic changes of opinion en route to the truth.

confirmation convergence learning mind-changes model-selection naturalism Ockham simplicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchanan, B.(1974), 'Scientific Theory Formation by Computer', in J.Simon, ed., Computer Oriented Learning Processes, Leyden: Noordhoff.Google Scholar
  2. Carnap, R.(1950), The Logical Foundations of Probability, Chicago: University of Chicago Press.Google Scholar
  3. DeFinetti, B.(1972), Probability; Induction and Statistics, New York: Wiley.Google Scholar
  4. Earman, J.(1992), Bayes or Bust?A Critical Examination of Bayesian Confirmation Theory, Cambridge, MA: MIT Press.Google Scholar
  5. Forster, M.and Sober, E.(1994), 'How to Tell When Simpler, More Unified, or Less ad hoc Theories Will Provide More Accurate Predictions', British Journal for the Philosophy of Science 48, pp.21-48.Google Scholar
  6. Friedman, M.(1974), 'Explanation and Scientific Understanding', Journal of Philosophy 71, pp.5-19.Google Scholar
  7. Ga¨rdenfors (1988), Knowledge In Flux:Modeling the Dynamics of Epistemic States, Cambridge, MA: MIT Press.Google Scholar
  8. Garey, M.and Johnson, D.(1979), Computers and Intractability, New York: Freeman.Google Scholar
  9. Glymour, C.(1980), Theory and Evidence, Princeton: Princeton University Press.Google Scholar
  10. Goldman, A.(1986), Epistemology and Cognition, Cambridge, MA: Harvard University Press.Google Scholar
  11. Goodman, N.(1983), Fact; Fiction; and Forecast, 4th edition, Cambridge, MA: Harvard University Press.Google Scholar
  12. Harman, G.(1965), 'Inference to the Best Explanation ', Philosophical Review 74, pp.88-95.Google Scholar
  13. Hempel, C.G.(1965), 'Studies in the Logic of Confirmation', in Aspects of Scientific Explanation, New York: The Free Press, pp.3-51.Google Scholar
  14. Hinman, P.G.(1978), Recursion Theoretic Hierarchies, New York: Springer.Google Scholar
  15. Jain, S., Osherson, D., Royer, J.and Sharma, A.(1999), Systems that Learn, 2nd edition, Cambridge, MA: MIT Press.Google Scholar
  16. Jeffreys, H.(1985), Theory of Probability, 3rd edition, Oxford: Clarendon Press.Google Scholar
  17. Kelly, K.(1996), The Logic of Reliable Inquiry, New York: Oxford University Press.Google Scholar
  18. Kelly, K.(2004), 'Uncomputability:The Problem of Induction Internalized', Theoretical Computer Science 317, pp.227-249.Google Scholar
  19. Kitcher, P.(1989), 'Explanatory Uni cation and the Causal Structure of the World', in P. Kitcher and W.Salmon, eds., Scientific Explanation, Minneapolis: University of Minnesota, pp.410-505.Google Scholar
  20. Kuhn, T.(1970), The Structure of Scientific Revolutions, Chicago: University of Chicago Press.Google Scholar
  21. Laudan, L.(1980), 'Why Abandon the Logic of Discovery?', in T.Nickles, ed., Scientific Discovery, Logic, and Rationality, Boston: D.Reidel.Google Scholar
  22. Laudan, L.(1996), Beyond Positivism and Relativism, Boulder, CO: Westview Press.Google Scholar
  23. Martin, E.and Osherson, D.(1998), Elements of Scientific Inquiry, Cambridge, MA: MIT Press.Google Scholar
  24. Mitchell, T.(1997), Machine Learning, New York: McGraw-Hill.Google Scholar
  25. Nozick, R.(1981), Philosophical Explanations, Cambridge, MA: Harvard University Press.Google Scholar
  26. Osherson, D., Stob, M.and Weinstein, S.(1986), Systems that Learn, Cambridge, MA: MIT Press.Google Scholar
  27. Popper, K.(1959), The Logic of Scientific Discovery, New York: Harper.Google Scholar
  28. Putnam, H.(1965), 'Trial-and-Error Predicates and a Solution to a Problem of Mostowki', Journal of Symbolic Logic 30, pp.49-57.Google Scholar
  29. Rissannen, J.(1983), 'A Universal Prior for Integers and Estimation by Minimum Description Length', The Annals of Statistics 11, pp.415-431.Google Scholar
  30. Rogers, H.(1967), The Theory of Recursive Functions and Effective Computability, New York: McGraw-Hill.Google Scholar
  31. Rosencrantz, R.(1983), 'Why Glymour is a Bayesian', in John Earman, ed., Testing Scientific Theories, Minneapolis: University of Minnesota Press.Google Scholar
  32. Salmon, W.(1967), The Foundations of Scientific Inference, Pittsburgh: University of Pittsburgh Press.Google Scholar
  33. Salmon, W.(1990), 'Tom Kuhn Meets Tom Bayes ', in Scientific Theories, Minneapolis: University of Minnesota Press, pp.175-204.Google Scholar
  34. Schulte, O.(1999), 'Means-Ends Epistemology ', The British Journal for the Philosophy of Science 5, pp.1-31.Google Scholar
  35. Schulte, O.(2001), 'Inferring Conservation Laws in Particle Physics:A Case Study in the Problem of Induction', The British Journal for the Philosophy of Science 51, pp.771-806.Google Scholar
  36. Sklar, L.(1977), Space, Time, and Spacetime, Berkeley: University of California Press.Google Scholar
  37. Solomono., R.(1964), 'A Formal Theory of Inductive Inference, Part 1', Information and Control 7, pp.1-22.Google Scholar
  38. Spirtes, P., Glymour, C.and Scheines, R.(2000), Causation; Prediction; and Search, Cambridge, MA: MIT Press.Google Scholar
  39. VanFraassen, B.(1980), The Scientific Image, Oxford: Clarendon Press.Google Scholar
  40. Wasserman, L.(2000), 'Bayesian Model Selection and Model Averaging', Journal of Mathematical Psychology 44, pp.92-107.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Kevin T. Kelly
    • 1
  1. 1.College of Humanities & Social Sciences, Department of PhilosophyCarnegie Mellon UniversityPittburghUSA

Personalised recommendations