Methods in Cell Science

, Volume 25, Issue 1–2, pp 7–14 | Cite as

Neural cell fate analysis in zebrafish using olig2 BAC transgenics

  • Jimann Shin
  • Hae-Chul Park
  • Jolanta M. Topczewska
  • David J. Mawdsley
  • Bruce Appel
Article

Abstract

We describe here simple methods for producing transgenic zebrafish reporter lines using BAC clones. The use of BAC clones facilitates creation of useful transgenics as the large amounts of genomic DNA they contain increase the likelihood that reporter gene expression will be properly regulated. Combined with recent advances in live embryo image analysis, this strategy has the potential to greatly advance the investigation of neural cell behavior during development.

cerebellum EGFP motor neuron olig2 oligodendrocyte Purkinje neuron spinal cord transgenic zebrafish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kimmel CB, Warga RM, Kane DA (1994). Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120: 265–276.Google Scholar
  2. 2.
    Papan C, Campos-Ortega JA (1997). A clonal analysis of spinal cord development in the zebrafish. Dev Genes Evol 207: 71–81.Google Scholar
  3. 3.
    Papan C, Campos-Ortega JA (1999). Region-specific cell clones in the developing spinal cord of the zebrafish. Dev Genes Evol 209: 135–144.Google Scholar
  4. 4.
    Eisen JS, Pike SH, Romancier B (1990). An identified motoneuron with variable fates in embryonic zebrafish. J Neurosci 10: 34–43.Google Scholar
  5. 5.
    Eisen JS (1992). The role of interactions in determining cell fate of two identified motoneurons in the embryonic zebrafish. Neuron 8: 231–240.Google Scholar
  6. 6.
    Eisen JS (1991). Determination of primary motoneuron identity in developing zebrafish embryos. Science 252: 569–572.Google Scholar
  7. 7.
    Appel B, Korzh V, Glasgow E, Thor S, Edlund T, Dawid IB, Eisen JS (1995). Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development 121: 4117–4125.Google Scholar
  8. 8.
    Appel B, Givan LA, Eisen JS (2001). Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development. BMC Dev Biol 1: 13.Google Scholar
  9. 9.
    Bernhardt RR, Patel CK, Wilson SW, Kuwada JY (1992). Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J Comp Neurol 326: 263–272.Google Scholar
  10. 10.
    Bernhardt RR, Chitnis AB, Lindamer L, Kuwada JY (1990). Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol 302: 603–616.Google Scholar
  11. 11.
    Hale ME, Ritter DA, Fetcho JR (2001). A confocal study of spinal interneurons in living larval zebrafish. J Comp Neurol 437: 1–16.Google Scholar
  12. 12.
    Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, van Eeden FJ, Nusslein-Volhard C (1996). Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123: 179–190.Google Scholar
  13. 13.
    Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z, Yang H, Driever W (1996). Mutations affecting the development of the embryonic zebrafish brain. Development 123: 165–178.Google Scholar
  14. 14.
    Jiang YJ, Brand M, Heisenberg CP, Beuchle D, Furutani-Seiki M, Kelsh RN, Warga RM, Granato M, Haffter P, Hammerschmidt M, Kane DA, Mullins MC, Odenthal J, van Eeden FJ, Nusslein-Volhard C (1996). Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123: 205–216.Google Scholar
  15. 15.
    Udvadia AJ, Linney E (2003). Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev Biol 256: 1–17.Google Scholar
  16. 16.
    Koster RW, Fraser SE (2001). Direct imaging of in vivo neuronal migration in the developing cerebellum. Curr Biol 11: 1858–1863.Google Scholar
  17. 17.
    Gilmour DT, Maischein HM, Nusslein-Volhard C (2002). Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34: 577–588.Google Scholar
  18. 18.
    Neumann CJ, Nuesslein-Volhard C (2000). Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289: 2137–2139.Google Scholar
  19. 19.
    Picker A, Scholpp S, Bohli H, Takeda H, Brand M (2002). A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines. Development 129: 3227–3239.Google Scholar
  20. 20.
    Jessen JR, Meng A, McFarlane RJ, Paw BH, Zon LI, Smith GR, Lin S (1998). Modification of bacterial artificial chromosomes through chistimulated homologous recombination and its application in zebrafish transgenesis. Proc Natl Acad Sci USA 95: 5121–5126.Google Scholar
  21. 21.
    Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001). A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73: 56–65.Google Scholar
  22. 22.
    Westerfield M (2000). The Zebrafish Book. Eugene, Oregon, USA: University of Oregon Press.Google Scholar
  23. 23.
    Hauptmann G, Gerster T (2000). Multicolor whole-mount in situ hybridization. Methods Mol Biol 137: 139–148.Google Scholar
  24. 24.
    Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978–5983.Google Scholar
  25. 25.
    Langenberg T, Brand M, Cooper MS (2003). Imaging brain development and organogenesis in zebrafish using immobilized embryonic explants. Developmental Dynamics. In press.Google Scholar
  26. 26.
    Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109: 75–86.Google Scholar
  27. 27.
    Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000). Sonic hedgehog - regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25: 317–329.Google Scholar
  28. 28.
    Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M, Yoshida S, Nabeshima Y, Shimamura K, Nakafuku M (2001). Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31: 757–771.Google Scholar
  29. 29.
    Novitch BG, Chen AI, Jessell TM (2001). Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31: 773–789.Google Scholar
  30. 30.
    Park H, Mehta A, Richardson JS, Appel B (2002). olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Developmental Biology 248: 356–368.Google Scholar
  31. 31.
    Sun T, Echelard Y, Lu R, Yuk D, Kaing S, Stiles CD, Rowitch DH (2001). Olig bHLH proteins interact with homeodomain proteins to regulate cell fate acquisition in progenitors of the ventral neural tube. Curr Biol 11: 1413–1420.Google Scholar
  32. 32.
    Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K (2002). The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12: 1157–1163.Google Scholar
  33. 33.
    Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y (2000). Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99: 143–148.Google Scholar
  34. 34.
    Zhou Q, Wang S, Anderson DJ (2000). Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25: 331–343.Google Scholar
  35. 35.
    Zhou Q, Choi G, Anderson DJ (2001). The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31: 791–807.Google Scholar
  36. 36.
    Zhou Q, Anderson DJ (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109: 61–73.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jimann Shin
    • 1
  • Hae-Chul Park
    • 1
  • Jolanta M. Topczewska
    • 1
  • David J. Mawdsley
    • 1
  • Bruce Appel
    • 2
  1. 1.Department of Biological SciencesVanderbilt UniversityNashvilleUSA
  2. 2.Department of Biological SciencesVanderbilt UniversityNashvilleUSA

Personalised recommendations