Microbiology

, Volume 73, Issue 1, pp 1–13 | Cite as

Thermophilic Microbial Communities of Deep-Sea Hydrothermal Vents

  • M. L. Miroshnichenko
Article

Abstract

The most recent publications on the phylogenetic and functional diversity of thermophilic prokaryotes inhabiting thermal deep-sea environments are reviewed. Along with a general physicochemical characterization of the biotope studied, certain adaptation mechanisms are discussed that are peculiar to the microorganisms inhabiting it. A separate chapter addresses the phylogenetic analysis of deep-sea hydrothermal microbial communities and uncultivated microorganisms recently discovered therein using molecular biological techniques. Physiological groups of thermophilic microorganisms found in deep-sea hydrothermal vents are considered: methanogens, sulfate-, iron-, and sulfur-reducers, aerobic hydrogen-oxidizing prokaryotes, aerobic and anaerobic organotrophs. In most cases, the isolates represent novel taxons.

deep-sea hydrothermal vents barophily hyperthermophilic archaea the subvent biosphere hypothesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Lutz, R.A., Shank, T.M., Fornari, D.J., Haymon, R.M., Lilley, M.D., Von Damm, K.L., and Desbruyeres, D., Rapid Growth at Deep-Sea Vents, Nature (London), 1994, vol. 371, pp. 663–664.Google Scholar
  2. 2.
    Taylor, C.D., Wirsen, C.O., and Gaill, F., Rapid Microbial Production of Filamentous Sulfur Mats at Hydrothermal Vents, Appl. Environ. Microbiol., 1999, vol. 65,no. 5, pp. 2253–2255.Google Scholar
  3. 3.
    Jannasch, H.W. and Mottl, M.J., Geomicrobiology of Deep-Sea Hydrothermal Vents, Science, 1985, vol. 229, pp. 717–725.Google Scholar
  4. 4.
    Karl, D.M., The Microbiology of Deep-Sea Hydrothermal Vents, Boka Raton: CRC, 1995.Google Scholar
  5. 5.
    Biologiya gidrotermal'nykh sistem (Biology of Hydrothermal Systems), Gebruk, A.V., Ed., Moscow, 2002.Google Scholar
  6. 6.
    Delaney, J.R., Kelly, D.S., Lilley, M.D., Butterfield, D.A., Baross, J.A., Wilcock, W.S.D., Embley, R.W., and Summit, M., The Quantum Event of Oceanic Crustal Accretion: Impacts of Diking at Mid-Ocean Ridges, Science, 1998, vol. 281, pp. 222–230.Google Scholar
  7. 7.
    Prieur, D., Hydrothermal Vents: Prokaryotes in Deep-Sea Hydrothermal Vents, Encyclopedia of Environmental Microbiology, New York: Wiley, 2002, pp. 1617–1628.Google Scholar
  8. 8.
    Deming, J.W. and Baross, J.A., Deep-Sea Smokers: Windows to a Subsurface Biosphere, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 3219–3230.Google Scholar
  9. 9.
    Erauso, G., Reysenbach, A.L., Godfroy, A., Meunier, J.R., Crump, B., Partensky, F., Baross, J.A., Marteinsson, V.T., Barbier, G., Pace, N., and Prieur, D., Pyrococcus abyssi sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Arch. Microbiol., 1993, vol. 160, pp. 338–349.Google Scholar
  10. 10.
    Zhao, H., Wood, A.G., Widdel, F., and Bryant, M.P., An Extremely Thermophilic Methanococcus from a Deep Sea Hydrothermal Vent and Its Plasmid, Arch. Microbiol., 1988, vol. 150, pp. 178–183.Google Scholar
  11. 11.
    Miller, J.F., Shah, N.N., Nelson, C.M., Ludlow, J.M., and Clark, D.S., Pressure and Temperature Effects on Growth and Methane Production of the Extreme Thermophile Methanococcus jannaschii, Appl. Environ. Microbiol., 1988, vol. 54,no. 12, pp. 3039–3042.Google Scholar
  12. 12.
    Marteinsson, V.T., Birrien, J.-L., Reysenbach, A.-L., Vernet, M., Marie, D., Gambacorta, A., Messner, P., Sleytr, U., and Prieur, D., Thermococcus barophilus sp. nov., a New Barophilic and Hyperthermophilic Archaeon Isolated under High Hydrostatic Pressure from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 351–359.Google Scholar
  13. 13.
    Blöch, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., and Stetter, K.O., Pyrolobus fumarii, gen. and sp. nov., Represents a Novel Group of Archaea, Extending the Upper Temperature Limit for Life to 113°C, Extremophiles, 1997, vol. 1, pp. 14–21.Google Scholar
  14. 14.
    Grogan, D.W., The Question of DNA Repair in Hyperthermophilic Archaea, Trends Microbiol., 2000, vol. 8,no. 4, pp. 180–189.Google Scholar
  15. 15.
    Reysenbach, A.-L. and Shock, E., Merging Genomes with Geochemistry in Hydrothermal Ecosystems, Science, 2002, vol. 296, pp. 1077–1082.Google Scholar
  16. 16.
    Llanos, J., Capasso, C., Parisi, E., Prieur, D., and Jeanthon, C., Susceptibility to Heavy Metals and Cadmium Accumulation in Aerobic and Anaerobic Thermophilic Microorganisms Isolated from Deep-Sea Hydrothermal Vents, Curr. Microbiol., vol. 41, pp. 201–205.Google Scholar
  17. 17.
    Childress, J.J. and Fisher, C.R., The Biology of Hydrothermal Vent Animals: Physiology, Biochemistry and Autotrophic Symbioses, Oceanogr. Mar. Biol. Animal Rev., 1992, vol. 30, pp. 337–441.Google Scholar
  18. 18.
    Campbell, B.J. and Cary, S.C., Characterization of a Novel Spirochete Associated with the Hydrothermal Vent Polychaete Annelid, Alvinella popmejana, Appl. Environ. Microbiol., 2001, vol. 67,no. 1, pp. 110–117.Google Scholar
  19. 19.
    Campbell, B.J., Jeanthon, C., Kostka, J.E., Luther, G.W., and Cary, S.C., Growth and Phylogenetic Properties of Novel Bacteria Belonging to the Epsilon Subdivision of the Proteobacteria Enriched from Alvinella popmejana and Deep-Sea Hydrothermal Vents, Appl. Environ. Microbiol., 2001, vol. 67, pp. 4566–4572.Google Scholar
  20. 20.
    Cary, S.C., Cottrell, M.T., Stein, J.L., Camacho, F., and Desbruyères, D., Molecular Identification and Localization of Filamentous Symbiotic Bacteria Associated with the Hydrothermal Vent Annelid Alvinella pompejana, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1124–1130.Google Scholar
  21. 21.
    Jeanthon, C., Molecular ecology of hydrothermal vent microbial communities, Antonie van Leeuwenhoek, 2000, vol. 77, pp. 117–133.Google Scholar
  22. 22.
    Cavanaugh, C.M., Wirsen, C.O., and Jannasch, H.W., Evidence for Methylotrophic Symbionts in a Hydrothermal Vent Mussel from the Mid-Atlantic Ridge, Appl. Environ. Microbiol., 1992, vol. 58, pp. 3799–3803.Google Scholar
  23. 23.
    Moyer, C.L., Dobb, F.C., and Karl, D.M., Phylogenetic Diversity of the Bacterial Community from a Microbial Mat at an Active Hydrothermal Vent System, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1555–1562.Google Scholar
  24. 24.
    Haddad, A., Camacho, F., Durand, P., and Cary, S.C., Phylogenetic Characterization of the Epibiotic Bacteria Associated with the Hydrothermal Vent Polychaete Alvinella pompejana, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1679–1687.Google Scholar
  25. 25.
    Polz, M.F. and Cavanaugh, C.M., Dominance of One Bacterial Phylotype at a Mid-Atlantic Ridge Hydrothermal Vent Site, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 7232–7236.Google Scholar
  26. 26.
    Cary, S.C., Cottrel, M.T., Stein, J.L., Camacho, F., and Desbruyeres, D., Molecular Identification and Localization of Filamentous Symbiotic Bacteria Associated with the Hydrothermal Vent Annelid Alvinella pompejana, Appl. Environ. Microbiol., 1997, vol. 63,no. 3, pp. 1124–1130.Google Scholar
  27. 27.
    Corre, E., Reysenbach, A.-L., and Prieur, D., ɛ-Proteobacterial Diversity from a Deep-Sea Hydrothermal Vent on the Mid-Atlantic Ridge, FEMS Microbiol. Lett., 2001, vol. 205, pp. 329–335.Google Scholar
  28. 28.
    Reysenbach, A.L., Longnecker, K., and Kirshtein, J., Novel Bacterial and Archaeal Lineages from an In Situ Growth Chamber Deployed at a Mid-Atlantic Ridge Hydrothermal Vent, Appl. Environ. Microbiol., 2000, vol. 66, pp. 3798–3806.Google Scholar
  29. 29.
    Longenecker, K. and Reysenbach, A.-L., Expansion of Geographic Distribution of a Novel Lineage of ɛ-Proteobacteria to a Hydrothermal Vent Site on the Southern East Pacific Rise, FEMS Microbiol. Ecol., 2001, vol. 35, pp. 13–38.Google Scholar
  30. 30.
    Miroshnichenko, M.L. and Kostrikina, N.A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E., and Bonch-Osmolovskaya, E.A., Nautilia lithotrophica gen. nov., sp. nov., a Thermophilic Sulfur-Reducing ɛ-Proteobacterium Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol 52, pp. 1299–1304.Google Scholar
  31. 31.
    Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassons, P., Ragnenes, G., Cueff, V., and Cambon-Bonavita, M.-A., Caminibacter hydrogenophilus gen. nov. sp. nov., a Novel Thermophilic Hydrogen-Oxidizing Bacterium Isolated from an East-Pacific Rise Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1317–1323.Google Scholar
  32. 32.
    Takai, K., Hydrothermal Vents: Biodiversity in Deep-Sea Hydrothermal Vents, Encyclopedia of Environmental Microbiology, New York: Wiley, 2002, pp. 1604–1616.Google Scholar
  33. 33.
    Marteinsson, V.T., Birrien, J.L., Kristjansson, J.K., and Prieur, D., First Isolation of Thermophilic Aerobic Non-Sporulating Heterotrophic Bacteria from Deep-Sea Hydrothermal Vents, FEMS Microbiol. Ecol., 1995, vol. 18, pp. 163–174.Google Scholar
  34. 34.
    Marteinsson, V.T., Birrien, J.L., Jeanthon, C., and Prieur, D., Numerical Taxonomic Study of Thermophilic Bacillus Isolated from Three Geographically Separated Deep-Sea Hydrothermal Vents, FEMS Microbiol. Ecol., 1996, vol. 21, pp. 255–266.Google Scholar
  35. 35.
    Harmsen, H.J.M., Prieur, D., and Jeanthon, C., Distribution of Microorganisms in Deep-Sea Hydrothermal Vent Chimneys Investigated by Whole-Cell Hybridization and Enrichment Culture of Thermophilic Subpopulations, Appl. Environ. Microbiol., 1997, vol. 63, pp. 2876–2883.Google Scholar
  36. 36.
    Takai, K. and Horikoshi, K., Genetic Diversity of Archaea in Deep-Sea Hydrothermal Vent Environments, Genetics, 1999, vol. 152, pp. 1285–1297.Google Scholar
  37. 37.
    Takai, K., Komatsu, T., Inagaki, F., and Horikoshi, K., Distribution of Archaea in a Black Smoker Chimney Structure, Appl. Environ. Microbiol., 2001, vol. 67,no. 8, pp. 1994–2007.Google Scholar
  38. 38.
    Teske, A., Hinrichs, K.-U., Edgcomb, V., Gomes, A., Kysela, D., Sylva, S., Sogin, M.L., and Jannasch, H.W., Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities, Appl. Environ. Microbiol., 2002, vol. 68,no. 4, pp. 1994–2007.Google Scholar
  39. 39.
    Garrity, G.M. and Holt, J.G., The Road Map to the Journal, Bergey's Manual of Systematic Bacteriology, Boone, D.R., Castenholz, R.W., Eds., New York: Springer, 2001, pp. 119–166.Google Scholar
  40. 40.
    Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K.H., and Horikoshi, K., Isolation and Phylogenetic Diversity of Members of Previously Uncultivated ɛ-Proteobacteria in Deep-Sea Hydrothermal Fields, FEMS Microbiol. Lett., vol. 218, pp. 167–174.Google Scholar
  41. 41.
    Takai, K., Nealson, K.H., and Horikoshi, K., Hydrogenimonas thermophilus, gen. nov., sp. nov., a Novel Thermophilic, Hydrogen-Oxidizing Chemolithoautotroph within Epsilon-Proteobacteria Isolated from a Black Smoker in a Central Indian Ridge Hydrothermal Field, Int. J. Syst. Evol. Microbiol., 2003, vol. 54, pp. 25–32.Google Scholar
  42. 42.
    Miroshnichenko, M.L., L'Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E.A., Jeanthon, C., and Stackebrandt, E., Caminibacter profundus sp. nov., a Novel Thermophile in the Nautiliales ord. nov. within the Class “Epsilonproteobacteria” Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 54, pp. 41–45.Google Scholar
  43. 43.
    Miroshnichenko, M.L., Kostrikina, N.A., Chernyh, N.A., Pimenov, N.V., Tourova, T.P., Antipov, A.N., Spring, S., Stackebrandt, E., and Bonch-Osmolovskaya, E.A., Caldithrix abyssi gen. nov., sp. nov., a Nitrate-Reducing, Thermophilic, Anaerobic Bacterium Isolated from a Mid-Atlantic Ridge Hydrothermal Vent, Represents a Novel Bacterial Lineage, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 323–329.Google Scholar
  44. 44.
    Sievert, S.M., Kuever, J.M., and Muyzer, G., Identification of 16S Ribosomal DNA-Defined Bacterial Populations at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece), Appl. Environ. Microbiol., 2000, vol. 66, pp. 3102–3109.Google Scholar
  45. 45.
    Miroshnichenko, M.L., Hippe, H., Stackebrandt, E., Kostrikina, N., Chernych, N., Jeanthon, C., Nazina, T., Belyaev, S.S., and Bonch-Osmolovskaya, E.A., Isolation and Characterization of Thermococcus sibiricus sp. nov. from a Western Siberia High-Temperature Oil Reservoir, Extremophiles, 2001, vol. 5, pp. 85–91.Google Scholar
  46. 46.
    Miroshnichenko, M.L., Hippe, H., Fardeau, M.L., Bonch-Osmolovskaya, E.A., Stackebrandt, E., and Jeanthon, C., Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., Two Thermophilic Bacteria Isolated from a Continental Petroleum Reservoir in Western Siberia, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1715–1722.Google Scholar
  47. 47.
    Marteinsson, V.T., Isolation and Characterization of Thermus thermophilus Gy1211 from a Deep-Sea Hydrothermal Vent, Extremophiles, 1999, vol. 3, pp. 247–251.Google Scholar
  48. 48.
    McCollom, T.M. and Schock, E.L., Geochemical Constrains on Chemolithotrophic Metabolism by Microorganisms in Seafloor Hydrothermal Systems, Geochem. Cosmochim. Acta, 1997, vol. 61,no. 20, pp. 4375–4391.Google Scholar
  49. 49.
    Kurr, M., Huber, R., Konig, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., and Stetter, K.O., Methanopyrus kandleri, gen. and sp. nov. Represents a Novel Group of Hyperthermophilic Methanogens, Growing at 110°C, Arch. Microbiol., 1991, vol. 156, pp. 239–247.Google Scholar
  50. 50.
    Jeanthon, C., L'Haridon, S., Reysenbach, A.-L., Vernet, M., Messner, P., Sleytr, U., and Prieur, D., Methanococcus infernus sp. nov., a Novel Hyperthermophilic Lithotrophic Methanogen Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 913–919.Google Scholar
  51. 51.
    Jeanthon, C., L'Haridon, S., Reysenbach, A.-L., Corre, E., Vernet, M., Messner, P., Sleytr, U., and Prieur, D., Methanococcus vulcanius sp. nov., a Novel Hyperthermophilic Methanogen Isolated from East Pacific Rise, and Identification of Methanococcus sp. DSM 4213T as Methanococcus fervens, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 583–589.Google Scholar
  52. 52.
    L'Haridon, S., Reysenbach, A.-L., Banta, A., Messner, P., Schumann, P., Stackebrandt, E., and Jeanthon, C., Methanocaldococcus indicus sp. nov., a Novel Hyperthermophilic Methanogen Isolated from the Central Indian Ridge, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1931–1935.Google Scholar
  53. 53.
    Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R., and Wolfe, R.S., Methanococcus jannaschii sp. nov., an Extremely Thermophilic Methanogen from a Submarine Hydrothermal Vent, Arch. Microbiol., 1983, vol. 136, pp. 254–261.Google Scholar
  54. 54.
    Takai, K., Inoue, A., and Horikoshi, K., Methanothermococcus okinawensis sp. nov., a Thermophilic, Methane-Producing Archaeon Isolated from a Western Pacific Deep-Sea Hydrothermal Vent System, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1089–1095.Google Scholar
  55. 55.
    Bonch-Osmolovskaya, E.A., Pimenov, N.V., Rusanov, I.I., Miroshnichenko, M.L., and Jeanthon, C., Acetate Oxidation in Terrestrial and Deep-Sea Thermal Habitats, 4th Int. Congress of Extremophiles, 2002, Abstract P5.Google Scholar
  56. 56.
    Jorgensen, B.B., Isaksen, M.F., and Jannasch, H.W., Bacterial Sulfate Reduction above 100°C in Deep-Sea Hydrothermal Vent Sediments, Science, 1992, vol. 258, pp. 1756–1757.Google Scholar
  57. 57.
    Burggraf, S., Jannasch, H.W., Nicolaus, B., and Stetter, K.O., Archaeoglobus profundus sp. nov. Represents a New Species within the Sulfate-Reducing Archaebacteria, Syst. Appl. Microbiol., 1990, vol. 13, pp. 24–28.Google Scholar
  58. 58.
    Jeanthon, C., L'Haridon, S., Cueff, V., Banta, A., Reysenbach, A.-L., and Prieur, D., Thermodesulfobacterium hydrogeniphilum sp. nov., a Thermophilic Chemolithoautotrophic Sulfate-Reducing Bacterium Isolated from a Deep-Sea Hydrothermal Vent at Guaymas Basin, and Emendation of the Genus Thermodesulfobacterium, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 765–772.Google Scholar
  59. 59.
    Mottle, M.J. and McConachy, T.F., Chemical Processes in Buoyant Hydrothermal Plumes on the East Pacific Rise Near 21° N, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1911–1927.Google Scholar
  60. 60.
    Fisher, F., Zillig, W., Stetter, K.O., and Schreiber, G., Chemolithotrophic Metabolism of Anaerobic Extremely Thermophilic Archaebacteria, Nature, 1983, vol. 301, pp. 511–513.Google Scholar
  61. 61.
    L'Haridon, S., Cilia, V., Messner, P., Raguénès, G., Gambacorta, A., Sleutr, U.B., Prieur, D., and Jeanthon, C., Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a Novel Autotrophic Sulphur-Reducing Bacterium Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 701–711.Google Scholar
  62. 62.
    Takai, K., Nakagawa, S., Sako, Y., and Horikoshi, K., Balnearium lithotrophicum gen. nov., sp. nov., a Novel Thermophilic, Strictly Anaerobic Hydrogen-Oxidizing Chemolithoautotroph Isolated from a Black Smoker Chimney in the Suiyo Seamount Hydrothermal System, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1947–1954.Google Scholar
  63. 63.
    Götz, D., Banta, A., Beveridge, T.G., Rushdi, A.I., Simoneit, B.R.T., and Reysenbach, A.-L., Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., Two Novel Thermophilic Hydrogen-Oxidizing Microaerophiles from Deep-Sea Hydrothermal Vents, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1349–1359.Google Scholar
  64. 64.
    Nakagawa, S., Takai, K., Horikoshi, K., and Sako, Y., Persephonella hydrogeniphila sp. nov., a Novel Thermophilic, Hydrogen-Oxidizing Bacterium from a Deep-Sea Hydrothermal Vent System, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 863–869.Google Scholar
  65. 65.
    Reysenbach, A.-L. and Cady, S., Microbiology of Ancient and Modern Hydrothermal Systems, Trends Microbiol., 2001, vol. 9,no. 2, pp. 79–86.Google Scholar
  66. 66.
    Reysenbach, A.-L., Banta, A.B., Boone, D.R., Cary, S.C., and Luther, G.W., Microbial Essentials at Hydrothermal Vents, Nature, 2000, vol. 404, p. 83.Google Scholar
  67. 67.
    Slobodkin, A., Campbell, B., Cary, S.C., Bonch-Osmolovskaya, E., and Jeanthon, C., Evidence for the Presence of Thermophilic Fe(III)-Reducing Microorganisms in Deep-Sea Hydrothermal Vents at 13° N (East Pacific Rise), FEMS Microbiol. Ecol., 2001, vol. 36, pp. 235–243.Google Scholar
  68. 68.
    Kashefi, K., Tor, J.M., Holmes, D.E., Gaw Van Praagh, C.V., Reysenbach, A.L., and Lovley, D.R., Geoglobus ahangari gen. nov., sp. nov., a Novel Hyperthermophilic Archaeon Capable of Oxidizing Organic Acids and Growing Autotrophically on Hydrogen with Fe(II) Serving as the Sole Electron Acceptor, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 719–728.Google Scholar
  69. 69.
    Miroshnichenko, M.L., L'Haridon, S., Slobodkin, A.I., Nercessian, O., Spring, S., Stackebrandt, E., Bonch-Osmolovskaya, E.A., and Jeanthon, C., Deferribacter abyssi sp. nov., an Anaerobic Thermophile from Deep-Sea Hydrothermal Vents of the Mid-Atlantic Ridge, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1637–1641.Google Scholar
  70. 70.
    Sokolova, T.G., Gonzales, J., Kostrikina, N.A., Chernyh, N.A., Tourova, T.P., Bonch-Osmolovskaya, E.A., and Robb, F., Carboxydobrachium pacificum gen. nov., sp. nov., a New Anaerobic Thermophilic Carboxydotrophic Bacterium from Okinawa Trough, Int. J. Syst. Bacteriol., 2001, vol. 51, pp. 141–149.Google Scholar
  71. 71.
    Zillig, W. and Reysenbach, A.-L., Class IV. Thermococci Class Nov., Bergey's Manual of Systematic Bacteriology, 2nd Edition, Boone, D.R. and Castenholz, R.W., Eds., New York: Springer, 2001, vol. 1, pp. 342–346.Google Scholar
  72. 72.
    Fiala, G., Stetter, K.O., Jannasch, H.W., Langworthy, T.A., and Madon, J., Staphylothermus marinus sp. nov. Represents a Novel Genus of Extremely Thermophilic Submarine Heterotrophic Archaebacteria Growing up to 98°C, Syst. Appl. Microbiol., 1986, vol. 8, pp. 106–113.Google Scholar
  73. 73.
    Pley, U., Schipka, J., Gambacorta, A., Jannasch, H.W., Fricke, H., Rachel, R., and Stetter, K.O., Pyrodictium abyssi sp. nov. Represents a Novel Heterotrophic Marine Archaeal Hyperthermophile Growing at 110°C, Syst. Appl. Microbiol., 1991, vol. 14, pp. 243–245.Google Scholar
  74. 74.
    Schonheit, P. and Schafer, T., Metabolism of Hyperthermophiles, World. J. Microbiol. Biotechnol., 1995, vol. 11, pp. 26–57.Google Scholar
  75. 75.
    Bonch-Osmolovskaya, E.A. and Miroshnichenko, M.L., Effect of Molecular Hydrogen and Elemental Sulfur on the Metabolism of the Extremely Thermophilic Archaebacteria of the genus Thermococcus, Mikrobiologiya, 1994, vol. 63, pp. 777–782.Google Scholar
  76. 76.
    Huber, R., Stöhr, J., Hohenhaus, S., Rachel, R., Burggraf, S., Jannasch, H.W., and Stetter, K.O., Thermococcus chitonophagus sp. nov., a Novel Chitin-Degrading, Hyperthermophilic Archaeum from a Deep-Sea Hydrothermal Vent Environment, Arch. Microbiol., 1995, vol. 164, pp. 255–264.Google Scholar
  77. 77.
    Antoine, E., Cilla, V., Meunier, J.R., Guezennec, J., Lesongeur, F., and Barbier, G., Thermosipho melanensis sp. nov., a New Thermophilic Anaerobic Bacterium Belonging to the Order Thermotogales, Isolated from Deep-Sea Hydrothermal Vents in the South-Western Pacific Ocean, Int. J. Syst. Evol. Microbiol., 1997, vol. 47, pp. 1118–1123.Google Scholar
  78. 78.
    Wery, N., Lesongeur, F., Pignet, P., Derennes, V., Cambon-Bonavita, M.-A., Godfroy, A., and Barbier, G., Marinitoga camini gen. nov., sp. nov., a Rod-Shaped Bacterium Belonging to the Order Thermotogales, Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 495–504.Google Scholar
  79. 79.
    Alain, K., Marteinsson, V.T., Miroshnichenko, M., Bonch-Osmolovskaya, E.A., Prieur, D., and Birrien, J.L., Marinitoga piezophila sp. nov., a Rod-Shaped, Thermo-Piezophilic Bacterium Isolated under High Hydrostatic Pressure from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1331–1339.Google Scholar
  80. 80.
    Harmsen, H.J.M., Prieur, D., and Jeanthon, C., Group-Specific 16S rRNA-Targeted Oligonucleotide Probes To Identify Thermophilic Bacteria in Marine Hydrothermal Vents, Appl. Environ. Microbiol., 1997, vol. 63, pp. 4061–4068.Google Scholar
  81. 81.
    Slobodkin, A.I., Tourova, T.P., Kostrikina, N.A., Chernyh, N.A., Bonch-Osmolovskaya, E.A., Jeanthon, C., and Jones, B.E., Tepidibacter thalassicus gen. nov., sp. nov., a Novel Moderately Thermophilic, Anaerobic, Fermentative Bacterium from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1131–1134.Google Scholar
  82. 82.
    Wery, N., Moricet, J.M., Cueff, V., Jean, J., Pignet, P., Lesongeur, F., Cambon-Bonavita, M.-A., and Barbier, G., Caloranaerobacter azorensis gen. nov., sp. nov., an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 1789–1796.Google Scholar
  83. 83.
    Alain, K., Pignet, P., Zbimden, M., Quillevere, M., Duchiron, F., Donval, J.-P., Lesongeur, F., Raguenes, G., Crassous, P., Querellou, J., and Cambon-Bonavita, M.-A., Caminicella sporogenes gen. nov., sp. nov., a Novel Thermophilic Spore-Forming Bacterium from an East-Pacific Rise Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1621–1628.Google Scholar
  84. 84.
    Huber, R., Jannasch, H.W., Rachel, R., Fuchs, T., and Stetter, K.O., Archaeoglobus veneficus sp. nov., a Novel Facultative Chemolithoautotrophic Hyperthermophilic Sulfite Reducer, Isolated from Abyssal Black Smokers, Syst. Appl. Microbiol., 1997, vol. 20, pp. 374–380.Google Scholar
  85. 85.
    Miroshnichenko, M.L., L'Haridon, S., Jeanthon, C., Antipov, A.N., Kostrikina, N.A., Tindall, B.J., Schumann, P., Spring, S., Stackebrandt, E., and Bonch-Osmolovskaya, E.A., Oceanithermus profundus gen. nov., sp. nov., a Thermophilic, Microaerophilic, Facultatively Chemolithoheterotrophic Bacterium from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2002, vol. 53, pp. 747–752.Google Scholar
  86. 86.
    Miroshnichenko, M.L., L'Haridon, S., Nercessian, O., Antipov, A.N., Kostrikina, N.A., Tindall, B.J., Schumann, P., Spring, S., Stackebrandt, E., Bonch-Osmolovskaya, E.A., and Jeanthon, C., Vulcanithermus mediatlanticus gen. nov., sp. nov., a Novel Member of the Family Thermaceae from a Deep-Sea Hot Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1143–1148.Google Scholar
  87. 87.
    Sako, Y., Satoshi Nakagawa, S., Takai, K., and Horikoshi, K., Marinithermus hydrothermalis gen. nov., sp. nov., a Strictly Aerobic, Thermophilic Bacterium from a Deep-Sea Hydrothermal Vent Chimney, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 59–65.Google Scholar
  88. 88.
    L'Haridon, S., Reysenbach, A.-L., Clenat, P., Prieur, D., and Jeanthon, C., Hot Subterranean Biosphere in a Continental Oil Reservoir, Nature, 1995, vol. 337, pp. 223–224.Google Scholar
  89. 89.
    Barbier, G., Godfroy, A., Meunier, J.R., Querellou, J., Cambon, M.A., Lesongeur, F., Grimont, P.A., and Raguenes, G., Pyrococcus glycovorans sp. nov., a Hyperthermophilic Archaeon Isolated from the East Pacific Rise, Int. J. Syst. Evol. Microbiol., 1999, vol. 49, pp. 1829–1837.Google Scholar
  90. 90.
    Takai, K., Sugai, A., Itoh, T., and Horikoshi, K., Palaeococcus ferrophilus gen. nov., sp., nov., a Barophilic, Hyperthermophilic Archaeon from a Deep-Sea Hydrothermal Vent Chimney, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 489–500.Google Scholar
  91. 91.
    Canganella, F., Jones, W.J., Gambacorta, A., and Antranikian, G., Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., Two Novel Thermophilic Archaea Isolated from the Guaymas Basin Hydrothermal Vent Site, Arch. Microbiol., 1997, vol. 167, pp. 233–238.Google Scholar
  92. 92.
    Duffaud, G.D., d'Hennezel, O.B., Peek, A.S., Reysenbach, A.L., and Kelly, R.M., Isolation and Characterization of Thermococcus barossii sp. nov., a Hyperthermophilic Archaeon Isolated from a Hydrothermal Vent Flange Formation, Syst. Appl. Microbiol., 1998, vol. 21, pp. 40–49.Google Scholar
  93. 93.
    Fiala, G. and Stetter, K.O., Pyrococcus furiosus sp. nov. Represents a New Genus Marine Heterotrophic Archaebacteria Growing Optimally at 100°C, Arch. Microbiol., 1986, vol. 145, pp. 56–61.Google Scholar
  94. 94.
    Godfroy, A., Meunier, J.-R., Guezennec, J., Lesongeur, F., Raguenes, G., Rimbault, A., and Barbier, G., Thermococcus fumicolans sp. nov., a New Hyperthermophilic Archaeum Isolated from Deep-Sea Hydrothermal Vent in North Fiji Basin, Int. J. Syst. Evol. Microbiol., 1996, vol. 46, pp. 1113–1119.Google Scholar
  95. 95.
    Jolivet, E., L'Haridon, S., Corre, E., Forterre, P., and Prieur, D., Thermococcus gammatolerans sp. nov., a Hyperthermophilic Archaeon from a Deep-Sea Hydrothermal Vent That Resists Ionizing Radiation, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 847–851.Google Scholar
  96. 96.
    Godfroy, A., Lesongeur, F., Raguenes, G., Querellou, J., Antoine, E., Meunier, J.-R., Guezennec, J., and Barbier, G., Thermococcus hydrothermalis sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 1997, vol. 47, pp. 622–626.Google Scholar
  97. 97.
    Gonzalez, J.M., Kato, C., and Horikoshi, K., Thermococcus peptonophilus sp. nov., a Fast Growing, Extremely Thermophilic Archaebacterium Isolated From Deep-Sea Hydrothermal Vents, Arch. Microbiol., 1995, vol. 164, pp. 159–164.Google Scholar
  98. 98.
    Gonzales, J.M., Masuchi, Y., Robb, F.T., Ammerman, J.W., Maeder, D.L., Yanagibayashi, M., Tamaoka, J., and Kato, C., Pyrococcus horikoshii sp. nov., a New Hyperthermophilic Archaeon Isolated from a Hydrothermal Vent at the Okinawa Trough, Extremophiles, 1998, vol. 2, pp. 123–130.Google Scholar
  99. 99.
    Grote, R., Li, L., Tamaoka, J., Horikoshi, K., and Antranikian, G., Thermococcus siculi sp. nov., a Novel Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent at the Mid-Okinawa Trough, Extremophiles, 1999, vol. 3, pp. 55–62.Google Scholar
  100. 100.
    Huber, R., Woese, C.R., Langworthy, T.A., Fricke, H., and Stetter, K.O., Thermosipho africanus gen. nov. Represents a New Genus of Thermophilic Eubacteria Within the “Thermotogales,” Syst. Appl. Microbiol., 1989, vol. 12, pp. 32–37.Google Scholar
  101. 101.
    Kobayashi, T., Kwak, Y.S., Akiba, T., Kudo, T., and Horikoshi, K., Thermococcus profundus sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Syst. Appl. Microbiol., 1994, vol. 17, pp. 232–236.Google Scholar
  102. 102.
    Reysenbach, A.L. and Deming, J.W., Effects of Hydrostatic Pressure on the Growth of Hyperthermophilic Archaebacteria from the Juan De Fuca Ridge, Appl. Environ. Microbiol., 1991, vol. 57, pp. 1271–1274.Google Scholar
  103. 103.
    Sokolova, T.G., Gonzales, J., Kostrikina, N.A., Chernyh, N.A., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Thermophilic CO-Oxidizing, H2-Producing Prokaryotes, 4th Int. Congress of Extremophiles, 2002, Abstract P275.Google Scholar
  104. 104.
    Gal'chenko, V.F., Lein, A.Yu., Galimov, E.M., and Ivanov, M.V., Methanotrophic Bacterial Symbionts as the Primary Link of the Trophic Chain in the Ocean, Dokl. Akad. Nauk SSSR, 1988, vol. 300,no. 3, pp. 717–720.Google Scholar
  105. 105.
    Gal'chenko, V.F., Pimenov, N.V., Lein, A.Yu., Galkin, S.V., Miller, Yu.M., and Ivanov, M.V., Mixotrophic Type of Nutrition in Olgaconcha tufari Beck (Gastropoda: Prosobranchia) from an Active Hydrothermal Field of Manus Basin (Bismarck Sea), Dokl. Akad. Nauk SSSR, 1992, vol. 323,no. 3, pp. 776–781.Google Scholar
  106. 106.
    Pimenov, N.V., Savvichev, A.S., Gebruk, A.V., Moskalev, L.I., Lein, A.Yu., and Ivanov, M.V., Trophic Specialization of Shrimps in the Hydrothermal Community of TAG, Dokl. Akad. Nauk SSSR, 1992, vol. 323,no. 3, pp. 567–571.Google Scholar
  107. 107.
    Pimenov, N.V., Kalyuzhnaya, M.G., Khmelenina, V.M., Mityushina, L.L., and Trotsenko, Yu.A., Utilization of Methane and Carbon Dioxide by Symbiotrophic Bacteria in Gills of Mytilidae (Bathymodiolus) from the Rainbow and Logachev Hydrothermal Fields on the Mid-Atlantic Ridge, Mikrobiologiya, 2002, vol. 71,no. 5, pp. 681–689.Google Scholar
  108. 108.
    Kashefi, K. and Lovley, D., Extending the Upper Temperature Limit for Life, Science, 2003, vol. 301, p. 934.Google Scholar
  109. 109.
    Moussar, H., L'Haridon, S., Tindall, B.J., Banta, A., Schumann, P., Stackebrandt, E., Reysenbach, A.L., and Jeanthon, C., Thermodesulfatator indicus gen. nov., sp. nov., a Novel Thermophilic Chemolithoautotrophic Sulfate-Reducing Bacterium Isolated from the Central Indian Ridge, Int. J. Syst. Evol. Microbiol., 2003, vol. 54, pp. 227–233.Google Scholar
  110. 110.
    Fardeau, M. L., Salinas, M.V., L'Haridon, S., Jeanthon, C., Verhe, F., Cayol, J-L., Patel, B. K., Garcia, J-L., and Olivier, B., Isolation from Oil Reservoirs of New Thermophilic Anaerobes Phylogenetically Related to Thermoanaerobacter subterraneus, T. yonseiensis, T. tengcongensis and Carboxydobrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov., with Creation of Four Subspecies, subterraneus, yonseiensis, tengcongensis, and pacificum sub-spp. nov., comb. nov., Int. J. Syst. Evol. Microbiol., 2003, Papers in Press, published online 13 October 2003. DOI 10.1099/ijs.0.02711-0.Google Scholar
  111. 111.
    Nakagawa, S., Takai, K., Horikoshi, K., and Sako, Y., Aeropyrum camini sp.nov., a Strictly Aerobic Hyperthermophilic Archaeon from a Deep-Sea Hydrothermal Vent Chimney, Int. J. Syst. Evol. Microbiol., 2003, Papers (in press), published online 1 August 2003. DOI 10.1099/ijs.0.02826-0.Google Scholar
  112. 112.
    Vertriani, C., Speck, M.D., Ellor, S.V., Lutz, R.A., and Starovoytov, V., Thermovibrio ammoniificans sp.nov., a Thermophilic, Chemolithotrophic, Nitrate Ammonifying Bacterium from Deep-Sea Hydrothermal Vents, Int. J. Syst. Evol. Microbiol., 2003, vol. 54, pp. 175–181.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • M. L. Miroshnichenko
    • 1
  1. 1.Institute of Microbiology, Russian Academy of SciencesMoscowRussia

Personalised recommendations