Metabolic Brain Disease

, Volume 19, Issue 3–4, pp 313–329 | Cite as

Oxidative Stress in the Pathogenesis of Hepatic Encephalopathy

  • M. D. Norenberg
  • A. R. Jayakumar
  • K. V. Rama Rao


The pathogenesis of hepatic encephalopathy (HE) remains elusive. While it is clear that ammonia is the likely toxin and that astrocytes are the main target of its neurotoxicity, precisely how ammonia brings about cellular injury is poorly understood. Studies over the past decade have invoked the concept of oxidative stress as a pathogenetic mechanism for ammonia neurotoxicity. This review sets out the arguments in support of this concept based on evidence derived from human observations, animal studies, and cell culture investigations. The consequences and potential therapeutic implications of oxidative stress in HE are also discussed.

Ammonia glutamine manganese peripheral benzodiazepine receptor cell swelling mitochondrial permeability transition free radicals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, J., Bender, A.S., and Norenberg, M.D. (1994). Ammonia stimulates the release of taurine from cultured astrocytes. Brain Res. 660:288–292.PubMedGoogle Scholar
  2. Albrecht, J., and Dolinska, M. (2001). Glutamine as a pathogenic factor in hepatic encephalopathy. J. Neurosci. Res. 65:1–5.PubMedGoogle Scholar
  3. Arockia, R.P.J., and Panneerselvam, C. (2001). Carnitine as a free radical scavenger in aging. Exp. Gerontol. 36:1713–1726.PubMedGoogle Scholar
  4. Aruoma, O.I., Halliwell, B., Hoey, B.Y., and Butler, J. (1988). The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem. J. 256:251–255.PubMedGoogle Scholar
  5. Asanuma, M., Nishibayashi-Asanuma, S., Miyazaki, I., Kohno, M., and Ogawa, N. (2001). Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem. 76:1895–1904.PubMedGoogle Scholar
  6. Aschner, M., Gannon, M., and Kimelberg, H.K. (1992). Manganese uptake and efflux in cultured rat astrocytes. Neurochem. 58:730–735.PubMedGoogle Scholar
  7. Bai, G., Rama Rao, K.V., Murthy, C.R.K., Panickar, K.S., Jayakumar, A.R., and Norenberg, M.D. (2001). Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J. Neurosci. Res. 66:981–991.PubMedGoogle Scholar
  8. Beal, M.F. (1996). Mitochondria, free radicals, and neurodegeneration. Curr. Opin. Neurobiol. 6:661–666.PubMedGoogle Scholar
  9. Bender, A.S., Reichelt, W., and Norenberg, M.D. (2000). Characterization of cystine uptake in cultured astrocytes. Neurochem. Int. 37:269–276.PubMedGoogle Scholar
  10. Bernardi, P., Colonna, R., Costantini, P., Eriksson, O., Fontaine, E., Ichas, F., Massari, S., Nicolli, A., Petronilli, V., and Scorrano, L. (1998). The mitochondrial permeability transition. BioFactors 8:273–281.PubMedGoogle Scholar
  11. Blei, A.T. (1991). Cerebral edema and intracranial hypertension in acute liver failure: Distinct aspects of the same problem. Hepatology 13:376–379.PubMedGoogle Scholar
  12. Blei, A.T., and Larsen, F.S. (1999). Pathophysiology of cerebral edema in fulminant hepatic failure. J. Hepatol. 31:771–776.PubMedGoogle Scholar
  13. Bosman, D.K., Deutz, N.E.P., Maas, M.A.W., Van Eijk, H.M.H., Smit, J.J.H., De Haan, J.G., and Chamuleau, R.A.F.M. (1992). Amino acid release from cerebral cortex in experimental acute liver failure, studied by in vivo cerebral cortex microdialysis. J. Neurochem. 59:591–599.PubMedGoogle Scholar
  14. Brahma, B., Forman, R.E., Stewart, E.E., Nicholson, C., and Rice, M.E. (2000). Ascorbate inhibits edema in brain slices. J. Neurochem. 74:1263–1270.PubMedGoogle Scholar
  15. Bruck, R., Aeed, H., Schey, R., Matas, Z., Reifen, R., Zaiger, G., Hochman, A., and Avni, Y. (2002). Pyrrolidine dithiocarbamate protects against thioacetamide-induced fulminant hepatic failure in rats. J. Hepatol. 36:370–377.PubMedGoogle Scholar
  16. Bruck, R., Aeed, H., Shirin, H., Matas, Z., Zaidel, L., Avni, Y., and Halpern, Z. (1999). The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure. J. Hepatol. 31:27–38.PubMedGoogle Scholar
  17. Brunk, U.T. (1989). On the origin of lipofuscin; the iron content of residual bodies, and the relation of these organelles to the lysosomal vacuome. A study on cultured human glial cells. Adv. Exp. Med. Biol. 266:313–320.PubMedGoogle Scholar
  18. Brusilow, S.W., and Traystman, R.J. (1986). [Letter to editor]. N. Engl. J. Med. 314:786.PubMedGoogle Scholar
  19. Brusilow, S.W., Valle, D.L., and Batshaw, M. (1979). New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 1:452.Google Scholar
  20. Butterfield, D.A., Hensley, K., Cole, P., Subramaniam, R., Aksenov, M., Aksenova, M., Bummer, P.M., Haley, B.E., and Carney, J.M. (1997). Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: Relevance to Alzheimer's disease. J. Neurochem. 68:2451–2457.PubMedGoogle Scholar
  21. Butterworth, R.F., Girard, G., and Giguere, J.F. (1988). Regional differences in the capacity for ammonia removal by brain following portacaval anastomosis. J. Neurochem. 51:486–490.PubMedGoogle Scholar
  22. Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J.H., and Vercesi, A.E. (1995). Permeabilization of the inner mitochondrial membrane by Ca 2 +ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Rad. Biol. Med. 18:479–486.PubMedGoogle Scholar
  23. Chan, P.H., Longar, S., Chen, S., Yu, A.C., Hillered, L., Chu, L., Imaizumi, S., Pereira, B., Moore, K., and Woolworth, V. (1989). The role of arachidonic acid and oxygen radical metabolites in the pathogenesis of vasogenic brain edema and astrocytic swelling. Ann. N. Y. Acad. Sci. 559:237–247.PubMedGoogle Scholar
  24. Chan, P.H., Yurko, M., and Fishman, R.A. (1982). Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J. Neurochem. 38:525–531.PubMedGoogle Scholar
  25. Chen, C.J., and Liao, S.L. (2002). Oxidative stress involves in astrocytic alterations induced by manganese. Exp. Neurol. 175:216–225.PubMedGoogle Scholar
  26. Chen, C.J., Liao, S.L., and Kuo, J.S. (2000). Gliotoxic action of glutamate on cultured astrocytes. J. Neurochem. 75:1557–1565.PubMedGoogle Scholar
  27. Chung, C., Gottstein, J., and Blei, A.T. (2001). Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 34:249–254.PubMedGoogle Scholar
  28. Clemmesen, J.O., Hansen, B.A., and Larsen, F.S. (1997). Indomethacin normalizes intracranial pressure in acute liver failure: A twenty-three-year-old woman treated with indomethacin. Hepatology 26:1423–1425.PubMedGoogle Scholar
  29. Clemmesen, J.O., Larsen, F.S., Kondrup, J., Hansen, B.A., and Ott, P. (1999). Cerebral herniation in acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–653.PubMedGoogle Scholar
  30. Córdoba, J., and Blei, A.T. (1996). Brain edema and hepatic encephalopathy. Semin. Liver Dis. 16:271–280.PubMedGoogle Scholar
  31. Córdoba, J., Crespin, J., Gottstein, J., and Blei, A.T. (1999). Mild hypothermia modifies ammonia-induced brain edema in rats after portacaval anastomosis. Gastroenterology 116:686–693.PubMedGoogle Scholar
  32. Desjardins, P., and Butterworth, R.F. (2002). The "peripheral-type" benzodiazepine (omega 3) receptor in hyper-ammonemic disorders. Neurochem. Int. 41:109–114.PubMedGoogle Scholar
  33. Gavin, C.E., Gunter, K.K., and Gunter, T.E. (1992). Mn 2 +sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol. Appl. Pharmacol. 115:1–5.PubMedGoogle Scholar
  34. Ginefri-Gayet, M., and Gayet, J. (1988). Study of the hypothermia induced by methionine sulfoximine in the rat. Pharmacol. Biochem. Behav. 31:797–802.PubMedGoogle Scholar
  35. Girard, G., and Butterworth, R.F. (1992). Effect of portacaval anastomosis on glutamine synthetase activities in liver, brain, and skeletal muscle. Dig. Dis. Sci. 37:1121–1126.PubMedGoogle Scholar
  36. Globus, M.Y.-T., Alonso, O., Dietrich, W.D., Busto, R., and Ginsberg, M. (1995). Glutamate release and free radical production following brain injury: Effects of posttraumatic hypothermia. J. Neurochem. 65:1704–1711.PubMedGoogle Scholar
  37. Görg, B., Foster, N., Reinehr, R., Bidmon, H.J., Hongen, A., Häussinger, D., and Scaliest, F. (2003). Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology 37:334–342.PubMedGoogle Scholar
  38. Gregorios, J.B., Mozes, L.W., Norenberg, L.O.B., and Norenberg, M.D. (1985a). Morphologic effects of ammonia on primary astrocyte cultures. I: Light microscopic studies. J. Neuropathol. Exp. Neurol. 44:397–403.PubMedGoogle Scholar
  39. Gregorios, J.B., Mozes, L.W., and Norenberg, M.D. (1985b). Morphologic effects of ammonia on primary astrocyte cultures. II: Electron microscopic studies. J. Neuropathol. Exp. Neurol. 44:404–414.PubMedGoogle Scholar
  40. Guerrini, V.H. (1994). Effect of antioxidants on ammonia induced CNS-renal pathobiology in sheep. Free Radic. Res. 21:35–43.PubMedGoogle Scholar
  41. Halestrap, A.P., Woodfield, K.Y., and Connern, C.P. (1997). Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J. Biol. Chem. 272:3346–3354.PubMedGoogle Scholar
  42. Harrigan, M.R., Tuteja, S., and Neudeck, B.L. (1997). Indomethacin in the management of elevated intracranial pressure: A review. J. Neurotrauma 14:637–650.PubMedGoogle Scholar
  43. Harrison, P.M., Wendon, J.A., Gimson, A.E., Alexander, G.J., and Williams, R. (1991). Improvement by acetyl-cysteine of hemodynamics and oxygen transport in fulminant hepatic failure. N. Engl. J. Med. 324:1852–1857.PubMedGoogle Scholar
  44. Haseloff, R.F., Blasig, I.E., Meffert, H., and Ebert, B. (1990). Hydroxyl radical scavenging and antipsoriatic activity of benzoic acid derivatives. Free Rad. Biol. Med. 9:111–115.PubMedGoogle Scholar
  45. Hawkins, R.A., and Jessy, J. (1991). Hyperammonaemia does not impair brain function in the absence of net glutamine synthesis. Biochem. J. 277:697–703.PubMedGoogle Scholar
  46. Hawkins, R.A., Jessy, J., Mans, A.M., and De Joseph, M.R. (1993). Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J. Neurochem. 60:1000–1006.PubMedGoogle Scholar
  47. Hazell, A.S., and Butterworth, R.F. (1999). Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc. Soc. Exp. Biol. Med. 222:99–112.PubMedGoogle Scholar
  48. Hazell, A.S., and Norenberg, M.D. (1998). Ammonia and manganese increase arginine uptake in cultured astro-cytes. Neurochem. Res. 23:869–873.CrossRefPubMedGoogle Scholar
  49. Hermenegildo, C., Marcaida, G., Montoliu, C., Grisol´ýa, S., Miñana, M.-D., and Felipo, V. (1996). NMDAreceptor antagonists prevent acute ammonia toxicity in mice. Neurochem. Res. 21:1237–1244.PubMedGoogle Scholar
  50. Hilgier, W., Anderzhanova, E., Oja, S.S., Saransaari, P., and Albrecht, J. (2003). Taurine reduces ammonia-and N-methyl-d-aspartate-induced accumulation of cyclic GMP and hydroxyl radicals in microdialysates of the rat striatum. Eur. J. Pharmacol. 468:21–25.PubMedGoogle Scholar
  51. Hilgier, W., Olson, J.E., and Albrecht, J. (1996). Relation of taurine transport and brain edema in rats with simple hyperammonemia or liver failure. J. Neurosci. Res. 45:69–74.PubMedGoogle Scholar
  52. Hortelano, S., Dallaporta, B., Zamzami, N., Hirsch, T., Susin, S.A., Marzo, I., Bosca, L., and Kroemer, G. (1997). Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett. 410:373–377.PubMedGoogle Scholar
  53. Inoue, E., Hori, S., Narumi, Y., Fujita, M., Kuriyama, K., Kadota, T., and Kuroda, C.H. (1991). Portal–systemic encephalopathy: Presence of basal ganglia lesions with high signal intensity on MRI images. Radiology 179:551–555.PubMedGoogle Scholar
  54. Itzhak, Y., Baker, L., and Norenberg, M.D. (1993). Characterization of the peripheral-type benzodiazepine receptor in cultured astrocytes: Evidence for multiplicity. Glia 9:211–218.PubMedGoogle Scholar
  55. Itzhak, Y., Roig-Cantisano, A., Dombro, R.S., and Norenberg, M.D. (1995). Acute liver failure and hyperam-monemia increase peripheral-type benzodiazepine receptor binding and pregnenolone synthesis in mouse brain. Brain Res. 705:345–348.PubMedGoogle Scholar
  56. Jalan, R., Olde Damink, S.W.M., Deutz, N.E.P., Lee, A., and Hayes, P.C. (1999). Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet 354:1164–1168.PubMedGoogle Scholar
  57. Jalan, R., Olde Damink, S.W., Deutz, N.E., Davies, N.A., Garden, O.J., Madhavan, K.K., Hayes, P.C., and Lee, A. (2003a). Moderate hypothermia prevents cerebral hyperemia and increase in intracranial pressure in patients undergoing liver transplantation for acute liver failure. Transplantation 75:2034-2039.PubMedGoogle Scholar
  58. Jalan, R., Olde Damink, S.W.M., Redhead, D.N., Lee, A., Hayes, P.C., and Deutz, N.E.P. (2003b). Increased cerebral and peripheral vasodilation, and whole body nitric oxide production after insertion of a transjugu-lar intrahepatic portal–systemic stent in patients with cirrhosis. In (E.A. Jones, A.F. Meijer, and R.A.F.M. Chamuleau, eds.), Encephalopathy and Nitrogen Metabolism in Liver Failure, Kluwer, Dordrecht, the Nether-lands, pp. 209–215.Google Scholar
  59. Jayakumar, A.R., Panickar, K., and Norenberg, M.D. (2002a). Effects on free radical generation by ligands of the peripheral benzodiazepine receptor in cultured neural cells. J. Neurochem. 83:1226–1234.PubMedGoogle Scholar
  60. Jayakumar, A.R., Rama Rao, K.V., Bai, G., and Norenberg, M.D. (2002b). Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. J. Neurochem. 81(Suppl. 1):109.Google Scholar
  61. Jayakumar, A.R., Rama Rao, K.V., and Norenberg, M.D. (2004). Glutamine-induced free radical production in cultured astrocytes. Glia. 46:296–302.PubMedGoogle Scholar
  62. Jones, A.L. (1998). Mechanism of action and value of N-acetylcysteine in the treatment of early and late acetaminophen poisoning: A critical review. J. Toxicol. Clin. Toxicol. 36:277–285.PubMedGoogle Scholar
  63. Kielland, J.J. (1937). Individual activity coefficients of ions in aqueous solutions. Am. Chem. Soc. 59:1675–1678.Google Scholar
  64. Kindt, F.W., Brock, M., Altenau, L.L., and Poll, W. (1977). Blood/brain barrier and brain oedema in ammonia intoxication. Lancet l:201.Google Scholar
  65. Kosenko, E., Felipo, V., Montoliu, C., Grisol´ýa, S., and Kaminsky, Y. (1996). Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria. Metab. Brain Dis. 12:69–82.PubMedGoogle Scholar
  66. Kosenko, E., Kaminski, Y., Lopata, O., Muravyov, N., and Felipo, V. (1999). Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Radic. Biol. Med. 26:1369–1374.PubMedGoogle Scholar
  67. Kosenko, E., Kaminsky, Y., Grau, E., Mi ñana, M.-D., Grisol´ýa, S., and Felipo, V. (1995). Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem. Res. 20:451–456.PubMedGoogle Scholar
  68. Kosenko, E., Kaminsky, Y., Kaminsky, A., Valencia, M., Lee, L., Hermenegildo, C., and Felipo, V. (1997). Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Rad. Res. 27:637–644.Google Scholar
  69. Kosenko, E., Venediktova, N., Kaminsky, Y., Montoliu, C., and Felipo, V. (2003). Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res. 981:193–200.PubMedGoogle Scholar
  70. Krieger, D., Krieger, S., Jansen, O., Gass, P., Theilmann, L., and Lichtnecker, H. (1995). Manganese and chronic hepatic encephalopathy. Lancet 346:270–274.PubMedGoogle Scholar
  71. Krueger, K.E. (1995). Molecular and functional properties of mitochondrial benzodiazepine receptors. Biochim. Biophys. Acta Rev. Biomembr. 1241:453–470.Google Scholar
  72. Kulisevsky, J., Pujol, J., Balanzo, J., Junque, C., Deus, J., Capdevila, A., and Villanueva, C. (1993). Palli-dal hyperintensity on magnetic resonance imaging in cirrhotic patients: Clinical correlations. Neurology 16:1382–1388.Google Scholar
  73. Lamar, C., Jr., and Sellinger, O.Z. (1965). The inhibition in vivo of cerebral glutamine synthetase and glutamine transferase by the convulsant methionine sulfoximine. Biochem. Pharmacol. 14:489–506.PubMedGoogle Scholar
  74. Lambert, I.H., and Hoffmann, E.K. (1990). Taurine transport and cell volume regulation in a mammalian cell. Prog. Clin. Biol. Res. 351:267–276.PubMedGoogle Scholar
  75. Larsen, F.S., Gottstein, J., and Blei, A.T. (2001). Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema. J. Hepatol. 34:548–554.PubMedGoogle Scholar
  76. Larsen, F.S.W. (2002). Brain edema in liver failure: Basic physiologic principles and management. Liver Trans-plant. 8:983–989.Google Scholar
  77. Layrargues, G.P., Rose, C., Spahr, L., Zayed, J., Normandin, L., and Butterworth, R.F. (1998). Role of manganese in the pathogenesis of portal–systemic encephalopathy. Metab. Brain Dis. 13:311–317.PubMedGoogle Scholar
  78. Levine, R.L. (1983). Oxidative modification of glutamine synthetase. J. Biol. Chem. 258:11828–11833.PubMedGoogle Scholar
  79. Liu, Y., Rosenthal, R.E., Starke-Reed, P., and Fiskum, G. (1993). Inhibition of postcardiac arrest brain protein oxidation by acetyl-l-carnitine. Free Rad. Biol. Med. 15:667–670.CrossRefPubMedGoogle Scholar
  80. Maciel, E.N., Vercesi, A.E., and Castilho, R.F. (2001). Oxidative stress in Ca (2 +)-induced membrane permeability transition in brain mitochondria. J. Neurochem. 79:1237–1245.PubMedGoogle Scholar
  81. Malaguarnera, M., Pistone, G., Astuto, M., Dell'Arte, S., Finocchiaro, G., Lo Giudice, E., and Pennisi, G. (2003). l-Carnitine in the treatment of mild or moderate hepatic encephalopathy. Dig. Dis. 21:271–275.PubMedGoogle Scholar
  82. Marcaida, G., Felipo, V., Hermenegildo, C., Mi ñana, M.D., and Gr´ýsolia, S. (1992). Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett. 296:67–68.PubMedGoogle Scholar
  83. Martinez-Hernandez, A., Bell, K.P., and Norenberg, M.D. (1977). Glutamine synthetase: Glial localization in brain. Science 195:1356–1358.PubMedGoogle Scholar
  84. Master, S., Gottstein, J., and Blei, A.T. (1999). Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30:876–880.PubMedGoogle Scholar
  85. McEnery, M.W., Snowman, A.M., Trifiletti, R.R., and Snyder, S.H. (1992). Isolation of the mitochondrial benzo-diazepine receptor: Association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. U.S.A. 89:3170–3174.PubMedGoogle Scholar
  86. Meister, A., and Anderson, M.E. (1983). Glutathione. Annu. Rev. Biochem. 52:711–760.PubMedGoogle Scholar
  87. Mousseau, D.D., and Butterworth, R.F. (1994). Current theories on the pathogenesis of hepatic encephalopathy. Proc. Soc. Exp. Biol. Med. 206:329–344.PubMedGoogle Scholar
  88. Murphy, M.G., Jollimore, C., Crocker, J.F.S., and Her, H. (1992). Beta-oxidation of [1-14 C]palmitic acid by mouse astrocytes in primary culture: Effects of agents implicated in the encephalopathy of Reye's syndrome. J. Neurosci. Res. 33:445–454.PubMedGoogle Scholar
  89. Murthy, C.R.K., Bai, G., Dombro, R.S., and Norenberg, M.D. (2000b). Ammonia-induced swelling in primary cultures of rat astrocytes: Role of free radicals. Soc. Neurosci. Abstr. 26:1893.Google Scholar
  90. Murthy, C.R.K., Bender, A.S., Dombro, R.S., Bai, G., and Norenberg, M.D. (2000a). Elevation of glutathione levels by ammonium ions in primary cultures of rat astrocytes. Neurochem. Int. 37:255–268.PubMedGoogle Scholar
  91. Murthy, C.R.K., Rama Rao, K.V., Bai, G., and Norenberg, M.D. (2001). Ammonia induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66:282–288.PubMedGoogle Scholar
  92. Negru, T., Ghiea, V., and Pasarica, D. (1999). Oxidative injury and other metabolic disorders in hepatic en-cephalopathy. Rom. J. Physiol. 36:29–36.PubMedGoogle Scholar
  93. Newsholme, P., Procopio, J., Lima, M.M., Pithon-Curi, T.C., and Curi, R. (2003). Glutamine and glutamate—Their central role in cell metabolism and function. Cell Biochem. Funct. 21:1–9.PubMedGoogle Scholar
  94. Norenberg, M.D. (1977). A light and electron microscopic study of experimental portal–systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab. Invest. 36:618–627.PubMedGoogle Scholar
  95. Norenberg, M.D. (1981). The astrocyte in liver disease. In (S. Fedoroff and Hertz L., eds.), Advances in Cellular Neurobiology, Vol. 2, Academic Press, New York, pp. 303–352.Google Scholar
  96. Norenberg, M.D. (1987). The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 6:13–33.PubMedGoogle Scholar
  97. Norenberg, M.D. (2001). Astrocytes and ammonia in hepatic encephalopathy. In (J. de Vellis, ed.), Astrocytes in the Aging Brain, Humana Press, Totowa, NJ, pp. 477–496.Google Scholar
  98. Norenberg, M.D., and Bender, A.S. (1994). Astrocyte swelling in liver failure: Role of glutamine and benzodi-azepines. Acta Neurochir. 60(Suppl.):24–27.Google Scholar
  99. Norenberg, M.D., Huo, Z., Neary, J.T., and Roig-Cantisano, A. (1997a). The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: Relation to energy metabolism and glutamatergic neuro-transmission. Glia 21:124–133.PubMedGoogle Scholar
  100. Norenberg, M.D., and Itzhak, Y. (1995). Acute liver failure and hyperammonemia increase nitric oxide synthase in mouse brain. Soc. Neurosci. Abstr. 21:869.Google Scholar
  101. Norenberg, M.D., Itzhak, Y., and Bender, A.S. (1997b). The peripheral benzodiazepine receptor and neurosteroids in hepatic encephalopathy. Adv. Exp. Med. Biol. 420:95–111.PubMedGoogle Scholar
  102. Norenberg, M.D., Neary, J.T., Bender, A.S., and Dombro, R.S. (1992). Hepatic encephalopathy: A disorder in glial–neuronal communication. In (A.C.H. Yu, L. Hertz, M.D. Norenberg, E. Sykova, and S.G. Waxman, eds.), Neuronal–Astrocytic Interactions. Implications for Normal and Pathological CNS Function, Elsevier, Amsterdam, pp. 261–269.Google Scholar
  103. Norenberg, M.D., Rama Rao, K.V., and Jayakumar, A.R. (2003). The mitochondrial permeability transition in ammonia neurotoxicity. In (E.A. Jones, A.F. Meijer, and R.A.F.M. Chamuleau, eds.), Encephalopathy and Nitrogen Metabolism in Liver Failure, Kluwer, Dordrecht, the Netherlands, pp. 267–285.Google Scholar
  104. O'Connor, J.E., and Costell, M. (1990). New roles of carnitine metabolism in ammonia toxicity. In (A. Grisol´ýa, V. Felipo, and M.D. Miñana, eds.), Cirrhosis, Hepatic Encephalopathy and Ammonium Toxicity, Plenum Press, New York, pp. 183–195.Google Scholar
  105. Papadopoulos, V. (1993). Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: Biological role in steroidogenic cell function. Endocr. Rev. 14:222–240.CrossRefPubMedGoogle Scholar
  106. Park, C.H., Carboni, E., Wood, P.L., and Gee, K.W. (1996). Characterization of peripheral benzodiazepine type sites in a cultured murine BV-2 microglial cell line. Glia 16:65–70.PubMedGoogle Scholar
  107. Pomier-Layrargues, G., Spahr, L., and Butterworth, R.F. (1995). Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345:735.Google Scholar
  108. Raabe, W.A. (1989). Neurophysiology of ammonia intoxication. In (R.F. Butterworth and G. Pomier Layrargues, eds.), Hepatic Encephalopathy: Physiology and Treatment, Humana Press, Clifton, NJ, pp. 49–77.Google Scholar
  109. Rama Rao, K.V., Bai, G., Jayakumar, A.R., and Norenberg, M.D. (2001). Role of the peripheral benzodiazepine receptor and neurosteroids in the induction of the mitochondrial permeability transition in cultured astrocytes. J. Neurochem. 78(Suppl. 1):25.Google Scholar
  110. Rama Rao, K.V., Jayakumar, A.R., and Norenberg, M.D. (2003a). Ammonia neurotoxicity: Role of the mitochon-drial permeability transition. Metab. Brain Dis. 18:113–127.PubMedGoogle Scholar
  111. Rama Rao, K.V., Jayakumar, A.R., and Norenberg, M.D. (2003b). Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem. Int. 43:517–523.PubMedGoogle Scholar
  112. Rama Rao, K.V., and Norenberg, M.D. (2001). Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab. Brain Dis. 16:67–78.PubMedGoogle Scholar
  113. Rama Rao, K.V., and Norenberg, M.D. (2004). Manganese induces the mitochondrial permeability transition in cultured astrocytes. J. Biol. Chem. 279:32333–32338, 2004.PubMedGoogle Scholar
  114. Rao, V.L.R., Audet, R.M., and Butterworth, R.F. (1995). Increased nitric oxide synthase activities and l-[ 3 H]arginine uptake in brain following portacaval anastomosis. J. Neurochem. 65:677–681.PubMedGoogle Scholar
  115. Rao, V.L.R., and Murthy, C.R.K. (1992). Ammonia-induced alterations in the metabolism of glutamate and aspartate in neuronal perikarya and synaptosomes of rat cerebellum. Metab. Brain Dis. 7:51–61.PubMedGoogle Scholar
  116. Ratnakumari, L., and Murthy, C.R.K. (1993). Response of rat cerebral glycolytic enzymes to hyperammonemic states. Neurosci. Lett. 161:37–40.PubMedGoogle Scholar
  117. Reichenbach, A., Stolzenburg, J.-U., Wolburg, H., Härtig, W., El-Hifnawi, E., and Martin, H. (1995). Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells. Glia 13:195–208.PubMedGoogle Scholar
  118. Robb, S.J., and Connor, J.R. (1998). An in vitro model for analysis of oxidative death in primary mouse astrocytes. Brain Res. 788:125–132.PubMedGoogle Scholar
  119. Rose, C., Michalak, A., Pannunzio, M., Chatauret, N., Rambaldi, A., and Butterworth, R.F. (2000). Mild hypother-mia delays the onset of coma and prevents brain edema and extracellular brain glutamate accumulation in rats with acute liver failure. Hepatology 31:872–877.PubMedGoogle Scholar
  120. Ryter, S.W., and Choi, A.M. (2002). Heme oxygenase–1: Molecular mechanisms of gene expression in oxygen-related stress. Antiox. Redox Signal. 4:625–632.Google Scholar
  121. Saha, N., Schreiber, R., VomDahl, S., Lang, F., Gerok, W., and Häussinger, D. (1993). Endogenous hydroperoxide formation, cell volume and cellular K balance in perfused rat liver. Biochem. Int. 296:701–707.Google Scholar
  122. Saha, N., Stoll, B., Lang, F., and Häussinger, D. (1992). Effect of anisotropic cell-volume modulation on glutathione-S-conjugate release, t-butyl hydroperoxide metabolism and the pentose–phosphate shunt in perfume rat liver. Eur. J. Biochem. 209:437–444.PubMedGoogle Scholar
  123. Sanchez-Olea, R., Morales-Melia, M., Moran, J., and Palates-Morales, H. (1995). Inhibition by polyunsatu-rated fatty acids of cell volume regulation and osmolyte fluxes in astrocytes. Am. J. Physiol. 269:C96–C102.PubMedGoogle Scholar
  124. Scarlett, J.L., Packer, M.A., Porteous, C.M., and Murphy, M.P. (1996). Alterations to glutathione and nicotinamide nucleotides during the mitochondrial permeability transition induced by peroxynitrite. Biochem. Pharmacol. 52:1047–1055.PubMedGoogle Scholar
  125. Schenker, S., and Warren, K.S. (1962). Effect of temperature variation on toxicity and metabolism of ammonia in mice. J. Lab. Clin. Med. 60:291–301.PubMedGoogle Scholar
  126. Schliess, F., Görg, B., Fischer, R., Desjardins, P., Bidmon, H.J., Herrmann, A., Butterworth, R.F., Zilles, K., and Häussinger, D. (2002). Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FAS EB J. 16:739–741.Google Scholar
  127. Sharma, P. (1996). Effect of ascorbic acid on hyperoxic rat astrocytes. Neuroscience 72:391–397.PubMedGoogle Scholar
  128. Song, G., Dhodda, V.K., Blei, A.T., Dempsey, R.J., and Rao, V.L. (2002). GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J. Neurosci. Res. 68:730–737.PubMedGoogle Scholar
  129. Sonnewald, U., Westergaard, N., Jones, P., Taylor, A., Bachelard, H.S., and Schousboe, A. (1996). Metabolism of [U-13 C5] glutamine in cultured astrocytes studied by NMR spectroscopy: First evidence of astrocytic pyruvate recycling. J. Neurochem. 67:2566–2572.PubMedGoogle Scholar
  130. Spranger, M., Schwab, S., Desiderato, S., Bonmann, E., Krieger, D., and Fandrey, J. (1998). Manganese augments nitric oxide synthesis in murine astrocytes: A new pathogenetic mechanism in manganism. Exp. Neurol. 149:277–283.PubMedGoogle Scholar
  131. Staub, F., Winkler, A., Peters, J., Kempski, O., Kachel, V., and Baethmann, A. (1994). Swelling, acidosis, and irreversible damage of glial cells from exposure to arachidonic acid in vitro. J. Cereb. Blood Flow Metab. 14:1030–1039.PubMedGoogle Scholar
  132. Sushma, S., Dasarathy, S., Tandon, R.K., Jain, S., Gupta, S., and Bhist, M.S. (1992). Sodium benzoate in the treatment of acute hepatic encephalopathy: A double-blind randomized trial. Hepatology 16:138–144.PubMedGoogle Scholar
  133. Szerb, J.C., and Butterworth, R.F. (1992). Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog. Neurobiol. 39:135–153.PubMedGoogle Scholar
  134. Takahashi, H., Koehler, R.C., Brusilow, S.W., and Traystman, R.J. (1990). Glutamine synthetase inhibition prevents cerebral oedema during hyperammonemia. Acta Neurochir. 51(Suppl.):346–347.Google Scholar
  135. Takahashi, H., Koehler, R.C., Brusilow, S.W., and Traystman, R.J. (1991). Inhibition of brain glutamine accumu-lation prevents cerebral edema in hyperammonemic rats. Am. J. Physiol. 261:H825–H829.PubMedGoogle Scholar
  136. Therrien, G., Rose, C., Butterworth, J., and Butterworth, R.F. (1997). Protective effect of l-carnitine in ammonia-precipitated encephalopathy in the portacaval shunted rat. Hepatology 25:551–556.CrossRefPubMedGoogle Scholar
  137. Tholey, G., Ledig, M., Mandel, P., Sargentini, L., Frivold, A.H., Leroy, M., Grippo, A.A., and Wedler, F.C. (1987). Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem. Res. 12:45–50.Google Scholar
  138. Thomas, G., and Ramwell, P.W. (1988). Vasodilatory properties of mono-l-arginine containing compounds. Biochem. Biophys. Res. Commun. 154:332–338.PubMedGoogle Scholar
  139. Traber, P.G., Dal Canto, M.C., Ganger, D., and Blei, A.T. (1987). Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: Ultrastructure and integrity of the blood–brain barrier. Hepatology 7:1272–1277.PubMedGoogle Scholar
  140. Traber, P., Dal Canto, M.C., Ganger, D., and Blei, A.T. (1989). Effect of body temperature on brain edema and encephalopathy in the rat after hepatic devasculariztion. Gastroenterology 96:885–891.PubMedGoogle Scholar
  141. Upreti, K.K., Das, M., and Khanna, S.K. (1991). Role of antioxidants and scavengers on argemone oil-induced toxicity in rats. Arch. Environ. Contam. Toxicol. 20:531–537.PubMedGoogle Scholar
  142. Verity, M.A. (1999). Manganese neurotoxicity: A mechanistic hypothesis. Neurotoxicology 20:489–497.PubMedGoogle Scholar
  143. Virmani, M.A., Biselli, R., Spadoni, A., Rossi, S., Corsico, N., Calvani, M., Fattorossi, A., De Simone, C., and Arrigoni-Martelli, E. (1995). Protective actions of l-carnitine and acetyl-l-carnitine on the neurotoxicity evoked by mitochondrial uncoupling or inhibitors. Pharmacol. Res. 32:383–389.PubMedGoogle Scholar
  144. Warren, K.S., and Schenker, S. (1964). Effect of an inhibition of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism. J. Lab. Clin. Med. 64:442–449.PubMedGoogle Scholar
  145. Warskulat, U., Görg, B., Bidmon, H.J., Muller, H.W., Schliess, F., and Häussinger, D. (2002). Ammonia-induced heme oxygenase-1 expression in cultured rat astrocytes and rat brain in vivo. Glia 40:324–336.PubMedGoogle Scholar
  146. Wendon, J.A., Harrison, P.M., Keays, R., and Williams, R. (1994). Cerebral blood flow and metabolism in fulminant hepatic failure. Hepatology 19:1407–1413.PubMedGoogle Scholar
  147. Wettstein, M., Gerok, W., and Häussinger, D. (1994). Endotoxin-induced nitric oxide synthesis in the perfused rat liver: Effects of l-arginine and ammonium chloride. Hepatology 19:641–647.PubMedGoogle Scholar
  148. Willard-Mack, C.L., Koehler, R.C., Hirata, T., Cork, L.C., Takahashi, H., Traystman, R.J., and Brusilow, S.W. (1996). Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589–599.PubMedGoogle Scholar
  149. Yudkoff, M., Nissim, I., and Pleasure, D. (1988). Astrocyte metabolism of 15N glutamine: Implications for the glutamine–glutamate cycle. J. Neurochem. 51:843–850.PubMedGoogle Scholar
  150. Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P.X., and Kroemer, G. (1997). Mitochondrial implication in accidental and programmed cell death: Apoptosis and necrosis. J. Bioenerg. Biomembr. 29:185–193.PubMedGoogle Scholar
  151. Zielinska, M., Law, R.O., and Albrecht, J. (2003). Excitotoxic mechanism of cell swelling in rat cerebral cortical slices treated acutely with ammonia. Neurochem. Int. 43:299–303.PubMedGoogle Scholar
  152. Zoratti, M., and Szabo, I. (1995). The mitochondrial permeability transition. Biochim. Biophys. Acta 1241:139–176.PubMedGoogle Scholar
  153. Zorov, D.B. (1996). Mitochondrial damage as a source of diseases and aging: A strategy of how to fight these. Biochim. Biophys. Acta 1275:10–15.PubMedGoogle Scholar
  154. Zwingmann, C., Flogel, U., Pfeuffer, J., and Leibfritz, D. (2000). Effects of ammonia exposition on glioma cells: Changes in cell volume and organic osmolytes studied by diffusion-weighted and high-resolution NMR spectroscopy. Dev. Neurosci. 22:463–471.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • M. D. Norenberg
    • 1
    • 2
    • 3
  • A. R. Jayakumar
    • 1
  • K. V. Rama Rao
    • 1
  1. 1.Department of PathologyUniversity of Miami School of MedicineMiamiFlorida
  2. 2.Department of Biochemistry & Molecular BiologyUniversity of Miami School of MedicineMiamiFlorida
  3. 3.Veterans Affairs Medical CenterMiamiFlorida

Personalised recommendations