Molecular and Cellular Biochemistry

, Volume 264, Issue 1–2, pp 85–97

Reactive oxygen species as mediators of angiogenesis signaling. Role of NAD(P)H oxidase

  • Masuko Ushio-Fukai
  • R. Wayne Alexander
Article

Abstract

Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as “risk factors” for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases. (Mol Cell Biochem 264: 85–97, 2004)

NAD(P)H oxidase reactive oxygen species vascular endothelial growth factor angiotensin II angiogenesis endothelial cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31, 1995CrossRefPubMedGoogle Scholar
  2. 2.
    Zachary I, Gliki G: Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49: 568–581, 2001CrossRefPubMedGoogle Scholar
  3. 3.
    Maulik N: Redox regulation of vascular angiogenesis. Antioxid Redox Signal 4: 783–784, 2002CrossRefPubMedGoogle Scholar
  4. 4.
    Maulik N, Das DK: Redox signaling in vascular angiogenesis. Free Radic Biol Med 33: 1047–1060, 2002CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor BM, Fleming WE, Benjamin CW, Wu Y, Mathews WR, Sun FF: The mechanism of cytoprotective action of lazaroids I: Inhibition of reactive oxygen species formation and lethal cell injury during periods of energy depletion. J Pharmacol Exp Ther 276: 1224–1231, 1996PubMedGoogle Scholar
  6. 6.
    Chen W, Gabel S, Steenbergen C, Murphy E: A redox-based mechanism for cardioprotection induced by ischemic preconditioning in perfused rat heart. Circ Res 77: 424–429, 1995PubMedGoogle Scholar
  7. 7.
    Skyschally A, Schulz R, Gres P, Korth HG, Heusch G: Attenuation of ischemic preconditioning in pigs by scavenging of free oxyradicals with ascorbic acid. Am J Physiol Heart Circ Physiol 284: H698–703, 2003PubMedGoogle Scholar
  8. 8.
    Tanaka K, Weihrauch D, Kehl F, Ludwig LM, LaDisa JF, Jr, Kersten JR, Pagel PS, Warltier DC: Mechanism of preconditioning by isoflurane in rabbits: A direct role for reactive oxygen species. Anesthesiology 97: 1485–1490, 2002CrossRefPubMedGoogle Scholar
  9. 9.
    Griendling KK, Sorescu D, Ushio-Fukai M: NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ Res 86: 494–501, 2000PubMedGoogle Scholar
  10. 10.
    Babior BM: The NADPH oxidase of endothelial cells. IUBMB Life 50: 267–269, 2000CrossRefPubMedGoogle Scholar
  11. 11.
    Ushio-Fukai M, Tang Y, Fukai T, Dikalov S, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW: Novel role of gp91phox-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 91: 1160–1167, 2002CrossRefPubMedGoogle Scholar
  12. 12.
    Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M: Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20: 2175–2183, 2000PubMedGoogle Scholar
  13. 13.
    Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S, Alexander RW: Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21: 489–495, 2001PubMedGoogle Scholar
  14. 14.
    Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK: Reactive oxygen species mediate the activation of Akt/Protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274: 22699–22704, 1999CrossRefPubMedGoogle Scholar
  15. 15.
    Ushio-Fukai M, Alexander RW, Akers M, Griendling KK: p38MAP kinase is a critical component of the redox-sensitive signaling pathways by angiotensin II: Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 273: 15022–15029, 1998CrossRefPubMedGoogle Scholar
  16. 16.
    Cai H, Griendling KK, Harrison DG: The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24: 471–478, 2003CrossRefPubMedGoogle Scholar
  17. 17.
    Ruef J, Hu ZY, Yin LY, Wu Y, Hanson SR, Kelly AB, Harker LA, Rao GN, Runge MS, Patterson C: Induction of vascular endothelial growth factor in balloon-injured baboon arteries. Circ Res 81: 24–33, 1997PubMedGoogle Scholar
  18. 18.
    Chua CC, Hamdy RC, Chua BH: Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med 25: 891–897, 1998CrossRefPubMedGoogle Scholar
  19. 19.
    Yasuda M, Ohzeki Y, Shimizu S, Naito S, Ohtsuru A, Yamamoto T, Kuroiwa Y: Stimulation of in vitro angiogenesis by hydrogen peroxide and the relation with ETS-1 in endothelial cells. Life Sci 64: 249–258, 1999CrossRefPubMedGoogle Scholar
  20. 20.
    Shono T, Ono M, Izumi H, Jimi SI, Matsushima K, Okamoto T, Kohno K, Kuwano M: Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16: 4231–4239, 1996PubMedGoogle Scholar
  21. 21.
    Abid MR, Kachra Z, Spokes KC, Aird WC: NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett 486: 252–256, 2000CrossRefPubMedGoogle Scholar
  22. 22.
    Lelkes PI, Hahn KL, Sukovich DA, Karmiol S, Schmidt DH: On the possible role of reactive oxygen species in angiogenesis. Adv Exp Med Biol 454: 295–310, 1998PubMedGoogle Scholar
  23. 23.
    Bouloumie A, Marumo T, Lafontan M, Busse R: Leptin induces oxidative stress in human endothelial cells. FASEB J 13: 1231–1238, 1999PubMedGoogle Scholar
  24. 24.
    Yamagishi S, Amano S, Inagaki Y, Okamoto T, Takeuchi M, Inoue H: Pigment epithelium-derived factor inhibits leptin-induced angiogenesis by suppressing vascular endothelial growth factor gene expression through anti-oxidative properties. Microvasc Res 65: 186–190, 2003CrossRefPubMedGoogle Scholar
  25. 25.
    Fisslthaler B, Michaelis UR, Randriamboavonjy V, Busse R, Fleming I: cytochrome p450 epoxygenases and vascular tone: Novel role for HMG-CoA reductase inhibitors in the regulation of CYP 2C expression. Biochim Biophys Acta 1619: 332–339, 2003PubMedGoogle Scholar
  26. 26.
    Tang FY, Meydani M: Green tea catechins and vitamin E inhibit angio-genesis of human microvascular endothelial cells through suppression of IL-8 production. Nutr Cancer 41: 119–125, 2001CrossRefPubMedGoogle Scholar
  27. 27.
    Colavitti R, Pani G, Bedogni B, Anzevino R, Borrello S, Waltenberger J, Galeotti T: Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/ KDR. J Biol Chem 277: 3101–3108, 2002CrossRefPubMedGoogle Scholar
  28. 28.
    van Wetering S, van Buul JD, Quik S, Mul FP, Anthony EC, ten Klooster JP, Collard JG, Hordijk PL: Reactive oxygen species mediate Rac-induced loss of cell—cell adhesion in primary human endothelial cells. J Cell Sci 115: 1837–1846, 2002PubMedGoogle Scholar
  29. 29.
    Lin MT, Yen ML, Lin CY, Kuo ML: Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol 64: 1029–1036, 2003PubMedGoogle Scholar
  30. 30.
    Ellis EA, Guberski DL, Somogyi-Mann M, Grant MB: Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/Wor diabetic rat. Free Radic Biol Med 28: 91–101, 2000CrossRefPubMedGoogle Scholar
  31. 31.
    Ellis EA, Grant MB, Murray FT, Wachowski MB, Guberski DL, Kubilis PS, Lutty GA: Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat. Free Radic Biol Med 24: 111–120, 1998PubMedGoogle Scholar
  32. 32.
    Yoshida A, Yoshida S, Ishibashi T, Kuwano M, Inomata H: Suppression of retinal neovascularization by the NF-kappaB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci 40: 1624–1629, 1999PubMedGoogle Scholar
  33. 33.
    Cao Y, Cao R: Angiogenesis inhibited by drinking tea [Letter]. Nature 398: 381, 1999PubMedGoogle Scholar
  34. 34.
    Cai T, Fassina G, Morini M, Aluigi MG, Masiello L, Fontanini G, D'Agostini F, De Flora S, Noonan DM, Albini A: N-acetylcysteine inhibits endothelial cell invasion and angiogenesis. Lab Invest 79: 1151–1159, 1999PubMedGoogle Scholar
  35. 35.
    Wheeler MD, Smutney OM, Samulski RJ: Secretion of extracellular superoxide dismutase from muscle transduced with recombinant adenovirus inhibits the growth of B16 melanomas in mice. Mol Cancer Res 1: 871–881, 2003PubMedGoogle Scholar
  36. 36.
    Gu W, Weihrauch D, Tanaka K, Tessmer JP, Pagel PS, Kersten JR, Chilian WM, Warltier DC: Reactive oxygen species are critical mediators of coronary collateral development in a canine model. Am J Physiol Heart Circ Physiol 285: H1582–H1589, 2003PubMedGoogle Scholar
  37. 37.
    Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R: A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 87: 26–32, 2000PubMedGoogle Scholar
  38. 38.
    Rueckschloss U, Galle J, Holtz J, Zerkowski HR, Morawietz H: Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation 104: 1767–1772, 2001PubMedGoogle Scholar
  39. 39.
    Duerrschmidt N, Wippich N, Goettsch W, Broemme HJ, Morawietz H: Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 269: 713–717, 2000CrossRefPubMedGoogle Scholar
  40. 40.
    Wagner AH, Schroeter MR, Hecker M: 17beta-estradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J 15: 2121–2130, 2001CrossRefPubMedGoogle Scholar
  41. 41.
    Moldovan L, Irani K, Moldovan NI, Finkel T, Goldschmidt-Clermont PJ: The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid Redox Signal 1: 29–43, 1999PubMedGoogle Scholar
  42. 42.
    Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD: Cell transformation by the superoxidegenerating oxidase Mox1. Nature 401: 79–82, 1999CrossRefPubMedGoogle Scholar
  43. 43.
    Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD: Homologs of gp91phox: Cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269: 131–140, 2001CrossRefPubMedGoogle Scholar
  44. 44.
    Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, Krause KH: A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276: 37594–37601, 2001CrossRefPubMedGoogle Scholar
  45. 45.
    Maturana A, Arnaudeau S, Ryser S, Banfi B, Hossle JP, Schlegel W, Krause KH, Demaurex N: Heme histidine ligands within gp91(phox) modulate proton conduction by the phagocyte NADPH oxidase. J Biol Chem 276: 30277–30284, 2001CrossRefPubMedGoogle Scholar
  46. 46.
    Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, et al: Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 99: 715–720, 2002CrossRefPubMedGoogle Scholar
  47. 47.
    Lambeth JD: Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9: 11–17, 2002CrossRefPubMedGoogle Scholar
  48. 48.
    Banfi B, Clark RA, Steger K, Krause KH: Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278: 3510–3513, 2003CrossRefPubMedGoogle Scholar
  49. 49.
    Geiszt M, Lekstrom K, Witta J, Leto TL: Proteins homologous to p47 phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278: 20006–20012, 2003CrossRefPubMedGoogle Scholar
  50. 50.
    Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H: Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278: 25234–25246, 2003CrossRefPubMedGoogle Scholar
  51. 51.
    Sorescu D, Weiss D, Lassegue B, Clempus RE, Szocs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor WR, Griendling KK: Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105: 1429–1435, 2002CrossRefPubMedGoogle Scholar
  52. 52.
    Li JM, Mullen AM, Yun S, Wientjes F, Brouns GY, Thrasher AJ, and Shah AM: Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res 90: 143–150, 2002CrossRefPubMedGoogle Scholar
  53. 53.
    Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG, et al. Oscillatory shear stress stimulates endothelial production of O2 from p47phox-based NAD(P)H oxidase leading to monocyte adhesion. J Biol Chem, 2003Google Scholar
  54. 54.
    Gu Y, Xu YC, Wu RF, Souza RF, Nwariaku FE, Terada LS: TNFalpha activates c-Jun amino terminal kinase through p47(phox). Exp Cell Res 272: 62–74, 2002CrossRefPubMedGoogle Scholar
  55. 55.
    Wu RF, Gu Y, Xu YC, Nwariaku FE, Terada LS: VEGF causes translocation of p47phox to membrane ruffles through WAVE1. J Biol Chem 278: 36830–40, 2003CrossRefPubMedGoogle Scholar
  56. 56.
    Li J-M, Shah AM: Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 277: 19952–19960, 2002CrossRefPubMedGoogle Scholar
  57. 57.
    Aikawa R, Nawano M, Gu Y, Katagiri H, Asano T, Zhu W, Nagai R, Komuro I: Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102: 2873–2879, 2000PubMedGoogle Scholar
  58. 58.
    MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ, Shah AM: Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: Role of reactive oxygen species and NADPH oxidase. Circulation 104: 2967–2974, 2001PubMedGoogle Scholar
  59. 59.
    Bendall JK, Cave AC, Heymes C, Gall N, Shah AM: Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105: 293–296, 2002CrossRefPubMedGoogle Scholar
  60. 60.
    Li JM, Gall NP, Grieve DJ, Chen M, Shah AM: Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40: 477–484, 2002CrossRefPubMedGoogle Scholar
  61. 61.
    Maack C, Kartes T, Kilter H, Schafers HJ, Nickenig G, Bohm M, Laufs U: Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108: 1567–1574, 2003CrossRefPubMedGoogle Scholar
  62. 62.
    Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J, Abe Y: Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun 281: 1200–1206, 2001CrossRefPubMedGoogle Scholar
  63. 63.
    Krijnen PA, Meischl C, Hack CE, Meijer CJ, Visser CA, Roos D, Niessen HW: Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol 56: 194–199, 2003CrossRefPubMedGoogle Scholar
  64. 64.
    Lakshminarayanan V, Lewallen M, Frangogiannis NG, Evans AJ, Wedin KE, Michael LH, Entman ML: Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia. Am J Pathol 159: 1301–1311, 2001PubMedGoogle Scholar
  65. 65.
    Touyz RM, Yao G, Schiffrin EL: c-Src induces phosphorylation and translocation of p47phox: Role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23: 981–987, 2003CrossRefPubMedGoogle Scholar
  66. 66.
    Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG: Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40: 511–515, 2002CrossRefPubMedGoogle Scholar
  67. 67.
    Lang D, Mosfer SI, Shakesby A, Donaldson F, Lewis MJ: Coronary microvascular endothelial cell redox state in left ventricular hypertrophy: The role of angiotensin II. Circ Res 86: 463–469, 2000PubMedGoogle Scholar
  68. 68.
    Cai H, Li Z, Dikalov S, Hwang J, Jo H, Dudley SC, Harrison DG: NAD(P)H oxidase derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J Biol Chem 107(1), 2002Google Scholar
  69. 69.
    Li JM, Shah AM: Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 278: 12094–12100, 2003CrossRefPubMedGoogle Scholar
  70. 70.
    Rueckschloss U, Duerrschmidt N, Morawietz H: NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal 5: 171–180, 2003CrossRefPubMedGoogle Scholar
  71. 71.
    Cifuentes ME, Rey FE, Carretero OA, Pagano PJ: Upregulation of p67(phox) and gp91(phox) in aortas from angiotensin II-infused mice. Am J Physiol Heart Circ Physiol 279: H2234–2240, 2000PubMedGoogle Scholar
  72. 72.
    Grishko V, Pastukh V, Solodushko V, Gillespie M, Azuma J, Schaffer SW: Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocyte: role of DNA damage. Am J Physiol Heart Circ Physiol. 285: H2364–H2372. 2003PubMedGoogle Scholar
  73. 73.
    Nakagami H, Takemoto M, Liao JK: NADPH oxidase-derived super-oxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35: 851–859, 2003CrossRefPubMedGoogle Scholar
  74. 74.
    Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, Kitakaze M, Liao JK Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 108: 1429–1437, 2001CrossRefPubMedGoogle Scholar
  75. 75.
    Oudot A, Vergely C, Ecarnot-Laubriet A, Rochette L: Angiotensin II activates NADPHoxidase in isolated rat hearts subjected to ischaemia—reperfusion. Eur J Pharmacol 462: 145–154, 2003CrossRefPubMedGoogle Scholar
  76. 76.
    Bell L, Madri JA: Influence of the angiotensin system on endothelial and smooth muscle cell migration. Am J Pathol 137: 7–12, 1990PubMedGoogle Scholar
  77. 77.
    Kintscher U, Wakino S, Kim S, Fleck E, Hsueh WA, Law RE: Angiotensin II induces migration and Pyk2/paxillin phosphorylation of human monocytes. Hypertension 37: 587–593, 2001PubMedGoogle Scholar
  78. 78.
    Otani A, Takagi H, Suzuma K, Honda Y: Angiotensin II potentiates vascular endothelial growth factor-induced angiogenic activity in retinal microcapillary endothelial cells. Circ Res 82: 619–628, 1998PubMedGoogle Scholar
  79. 79.
    Munzenmaier DH, Greene AS: Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 27: 760–765, 1996PubMedGoogle Scholar
  80. 80.
    Sasaki K, Murohara T, Ikeda H, Sugaya T, Shimada T, Shintani S, Imaizumi T: Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J Clin Invest 109: 603–611, 2002CrossRefPubMedGoogle Scholar
  81. 81.
    Emanueli C, Salis MB, Stacca T, Pinna A, Gaspa L, Madeddu P, Maddeddu P: Angiotensin AT(1) receptor signalling modulates reparative angiogenesis induced by limb ischaemia. Br J Pharmacol 135: 87–92, 2002PubMedGoogle Scholar
  82. 82.
    Walsh DA, Hu DE, Wharton J, Catravas JD, Blake DR, Fan TP: Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. Br J Pharmacol 120: 1302–1311, 1997PubMedGoogle Scholar
  83. 83.
    Tamarat R, Silvestre JS, Durie M, Levy BI: Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor-and inflammation-related pathways. Lab Invest 82: 747–756, 2002PubMedGoogle Scholar
  84. 84.
    Amaral SL, Linderman JR, Morse MM, Greene AS: Angiogenesis induced by electrical stimulation is mediated by angiotensin II and VEGF. Microcirculation 8: 57–67, 2001CrossRefPubMedGoogle Scholar
  85. 85.
    Muramatsu M, Katada J, Hayashi I, Majima M: Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 275: 5545–5552, 2000CrossRefPubMedGoogle Scholar
  86. 86.
    Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M: Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun 294: 441–447, 2002CrossRefPubMedGoogle Scholar
  87. 87.
    Yoshiji H, Kuriyama S, Kawata M, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Fukui H: The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: Possible role of the vascular endothelial growth factor. Clin Cancer Res 7: 1073–1078, 2001PubMedGoogle Scholar
  88. 88.
    Chintalgattu V, Nair DM, Katwa LC: Cardiac myofibroblasts: A novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. J Mol Cell Cardiol 35: 277–286, 2003CrossRefPubMedGoogle Scholar
  89. 89.
    Shimizu T, Okamoto H, Chiba S, Matsui Y, Sugawara T, Akino M, Nan J, Kumamoto H, Onozuka H, Mikami T, et al: VEGF-mediated angiogenesis is impaired by angiotensin type 1 receptor blockade in cardiomyopathic hamster hearts. Cardiovasc Res 58: 203–212, 2003CrossRefPubMedGoogle Scholar
  90. 90.
    Jesmin S, Hattori Y, Sakuma I, Mowa CN, Kitabatake A: Role of ANG II in coronary capillary angiogenesis at the insulin-resistant stage of a NIDDMrat model. AmJ Physiol Heart Circ Physiol 283: H1387–1397, 2002Google Scholar
  91. 91.
    Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T: Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273: 8890–8896, 1998CrossRefPubMedGoogle Scholar
  92. 92.
    Fujiyama S, Matsubara H, Nozawa Y, Maruyama K, Mori Y, Tsutsumi Y, Masaki H, Uchiyama Y, Koyama Y, Nose A, Iba O, Tateishi E, Ogata N, Jyo N, Higashiyama S, Iwasaka T: Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ Res 88: 22–29, 2001PubMedGoogle Scholar
  93. 93.
    Stone JR, Collins T: The role of hydrogen peroxide in endothelial proliferative responses. Endothelium 9: 231–238, 2002CrossRefPubMedGoogle Scholar
  94. 94.
    Cross MJ, Claesson-Welsh L: FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22: 201–207, 2001CrossRefPubMedGoogle Scholar
  95. 95.
    Matsumoto T, Claesson-Welsh L: VEGF receptor signal transduction. Sci STKE 112: 1–12, 2001Google Scholar
  96. 96.
    Dougher-Vermazen M, Hulmes JD, Bohlen P, Terman BI: Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochem Biophys Res Commun 205: 728–738, 1994CrossRefPubMedGoogle Scholar
  97. 97.
    Morales-Ruiz M, Fulton D, Sowa G, Languino LR, Fujio Y, Walsh K, Sessa WC: Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt. Circ Res 86: 892–896, 2000PubMedGoogle Scholar
  98. 98.
    Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, Huot J: Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275: 10661–10672, 2000CrossRefPubMedGoogle Scholar
  99. 99.
    Rousseau S, Houle F, Huot J: Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 10: 321–327, 2000CrossRefPubMedGoogle Scholar
  100. 100.
    Dimmeler S, Dernbach, Zeiher AM: Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477: 258–262, 2000CrossRefPubMedGoogle Scholar
  101. 101.
    Tang FY, Nguyen N, Meydani M: Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of Akt molecule. Int J Cancer 106: 871–878, 2003CrossRefPubMedGoogle Scholar
  102. 102.
    Murohara T, Asahara T: Nitric oxide and angiogenesis in cardiovascular disease. Antioxid Redox Signal 4: 825–831, 2002CrossRefPubMedGoogle Scholar
  103. 103.
    Rao GN: Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates ras and extra-cellular signal-regulated protein kinases group of mitogen activated protein kinases. Oncogene 13: 713–719, 1996PubMedGoogle Scholar
  104. 104.
    Bae YS, Kang SW, Seo MS, Baines IC, Takle E, Chock PB, Rhee SG: Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272: 217–221, 1997CrossRefPubMedGoogle Scholar
  105. 105.
    Sundaresan M, Zu-Xi Y, Ferrans VJ, Irani K, Finkel T: Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296–299, 1995PubMedGoogle Scholar
  106. 106.
    Mahadev K, Zilbering A, Zhu L, Goldstein BJ: Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 276: 21938–21942, 2001CrossRefPubMedGoogle Scholar
  107. 107.
    Ostman A, Bohmer FD: Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol 11: 258–266, 2001CrossRefPubMedGoogle Scholar
  108. 108.
    Rhee SG, Bae YS, Lee SR, Kwon J: Hydrogen peroxide: Akey messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000: PE1, 2000Google Scholar
  109. 109.
    Chiarugi P, Cirri P: Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 28: 509–514, 2003CrossRefPubMedGoogle Scholar
  110. 110.
    Denu JM, Dixon JE: Protein tyrosine phosphatases: Mechanisms of catalysis and regulation. Curr Opin Chem Biol 2: 633–641, 1998CrossRefPubMedGoogle Scholar
  111. 111.
    Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG: Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277: 20336–20342, 2002CrossRefPubMedGoogle Scholar
  112. 112.
    Rider DA, Sinclair AJ, Young SP: Oxidative inactivation of CD45 protein tyrosine phosphatase may contribute to T lymphocyte dysfunction in the elderly. Mech Ageing Dev 124: 191–198, 2003CrossRefPubMedGoogle Scholar
  113. 113.
    Blanchetot C, Tertoolen LG, den Hertog J: Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. EMBO J 21: 493–503, 2002CrossRefPubMedGoogle Scholar
  114. 114.
    Lee SR, Kwon KS, Kim SR, Rhee SG: Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366–15372, 1998CrossRefPubMedGoogle Scholar
  115. 115.
    Chiarugi P, Fiaschi T, Taddei ML, Talini D, Giannoni E, Raugei G, Ramponi G: Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation. J Biol Chem 276: 33478–33487, 2001CrossRefPubMedGoogle Scholar
  116. 116.
    Meng TC, Fukada T, Tonks NK: Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9: 387–399, 2002CrossRefPubMedGoogle Scholar
  117. 117.
    Kroll J, Waltenberger J: The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 272: 32521–32527, 1997CrossRefPubMedGoogle Scholar
  118. 118.
    Guo DQ, Wu LW, Dunbar JD, Ozes ON, Mayo LD, Kessler KM, Gustin JA, Baerwald MR, Jaffe EA, Warren RS, Donner DB: Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 275: 11216–11221, 2000CrossRefPubMedGoogle Scholar
  119. 119.
    Huang L, Sankar S, Lin C, Kontos CD, Schroff AD, Cha EH, Feng SM, Li SF, Yu Z, Van Etten RL, Blanar MA, Peters KG: HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J Biol Chem 274: 38183–38188, 1999CrossRefPubMedGoogle Scholar
  120. 120.
    Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E: Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 161: 793–804, 2003CrossRefPubMedGoogle Scholar
  121. 121.
    Cai H, Li Z, Davis ME, Kanner W, Harrison DG, Dudley SC, Jr: Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooper-atively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide. Mol Pharmacol 63: 325–331, 2003CrossRefPubMedGoogle Scholar
  122. 122.
    Marumo T, Noll T, Schini-Kerth VB, Harley EA, Duhault J, Piper HM, Busse R: Significance of nitric oxide and peroxynitrite in permeability changes of the retinal microvascular endothelial cell monolayer induced by vascular endothelial growth factor. J Vasc Res 36: 510–515, 1999CrossRefPubMedGoogle Scholar
  123. 123.
    Schreck R, Rieber P, Baeuerle PA; Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10: 2247–2258, 1991PubMedGoogle Scholar
  124. 124.
    Okuno H, Akahori A, Sato H, Xanthoudakis S, Curran T, Iba H: Escape from redox regulation enhances the transforming activity of Fos. Oncogene 8: 695–701, 1993PubMedGoogle Scholar
  125. 125.
    Wang GL, Jiang BH, Semenza GL: Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem Biophys Res Commun 216: 669–675, 1995CrossRefPubMedGoogle Scholar
  126. 126.
    Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K: Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15: 3892–3903, 1995PubMedGoogle Scholar
  127. 127.
    Lander HM, Ogiste JS, Teng KK, Novogrodsky A: p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 270: 21195–21198, 1995CrossRefPubMedGoogle Scholar
  128. 128.
    Tummala PE, Chen XL, Sundell CL, Laursen JB, Hammes CP, Alexander RW, Harrison DG, Medford RM: Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: Apotential link between the renin-angiotensin system and atherosclerosis. Circulation 100: 1223–1229, 1999PubMedGoogle Scholar
  129. 129.
    Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM: Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 83: 952–959, 1998PubMedGoogle Scholar
  130. 130.
    Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H: Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 87: 1195–1201, 2000PubMedGoogle Scholar
  131. 131.
    Wang Z, Castresana MR, Newman WH: Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun 285: 669–674, 2001CrossRefPubMedGoogle Scholar
  132. 132.
    Abid MR, Tsai JC, Spokes KC, Deshpande SS, Irani K, Aird WC: Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism. FASEB J 15: 2548–2550, 2001PubMedGoogle Scholar
  133. 133.
    Richard DE, Berra E, Pouyssegur J: Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 275: 26765–26771, 2000PubMedGoogle Scholar
  134. 134.
    Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, Busse R: Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase. Circ Res 89: 47–54, 2001PubMedGoogle Scholar
  135. 135.
    Haddad JJ, Land SC: A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett 505: 269–274, 2001CrossRefPubMedGoogle Scholar
  136. 136.
    Page EL, Robitaille GA, Pouyssegur J, Richard DE: Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 277: 48403–48409, 2002CrossRefPubMedGoogle Scholar
  137. 137.
    Yang ZZ, Zhang AY, Yi FX, Li PL, Zou AP: Redox regulation of HIF-1alpha levels and HO-1 expression in renal medullary interstitial cells. Am J Physiol Renal Physiol 284: F1207–1215, 2003PubMedGoogle Scholar
  138. 138.
    Haddad JJ: Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: Role for hypoxia-inducible factor-1alpha. Crit Care 7: 47–54, 2003CrossRefPubMedGoogle Scholar
  139. 139.
    Brandes RP, Miller FJ, Beer S, Haendeler J, Hoffmann J, Ha T, Holland SM, Gorlach A, Busse R: The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression. Free Radic Biol Med 32: 1116–1122, 2002CrossRefPubMedGoogle Scholar
  140. 140.
    Gorlach A, Berchner-Pfannschmidt U, Wotzlaw C, Cool RH, Fandrey J, Acker H, Jungermann K, Kietzmann T: Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: Involvement of the GT-Pase Rac1. Thromb Haemost 89: 926–935, 2003PubMedGoogle Scholar
  141. 141.
    Turcotte S, Desrosiers RR, Beliveau R: HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci 116: 2247–2260, 2003CrossRefPubMedGoogle Scholar
  142. 142.
    Galis ZS, Khatri JJ: Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ Res 90: 251–262, 2002PubMedGoogle Scholar
  143. 143.
    Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B: Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92: e80–86, 2003CrossRefPubMedGoogle Scholar
  144. 144.
    Inoue N, Takeshita S, Gao D, Ishida T, Kawashima S, Akita H, Tawa R, Sakurai H, Yokoyama M: Lysophosphatidylcholine increases the secretion of matrix metalloproteinase 2 through the activation of NADH/NADPH oxidase in cultured aortic endothelial cells. Atherosclerosis 155: 45–52, 2001CrossRefPubMedGoogle Scholar
  145. 145.
    Wary KK, Thakker GD, Humtsoe JO, Yang J: Analysis of VEGF-responsive genes involved in the activation of endothelial cells. Mol Cancer 2: 25, 2003CrossRefPubMedGoogle Scholar
  146. 146.
    Wassmann S, Laufs U, Baumer AT, Muller K, Ahlbory K, Linz W, Itter G, Rosen R, Bohm M, Nickenig G: HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 37: 1450–1457, 2001PubMedGoogle Scholar
  147. 147.
    Wassmann S, Laufs U, Baumer AT, Muller K, Konkol C, Sauer H, Bohm M, Nickenig G: Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: Involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 59: 646–654, 2001PubMedGoogle Scholar
  148. 148.
    Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, Bohm M, Nickenig G: Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22: 300–305, 2002CrossRefPubMedGoogle Scholar
  149. 149.
    Vecchione C, Brandes RP: Withdrawal of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors elicits oxidative stress and induces endothelial dysfunction in mice. Circ Res 91: 173–179, 2002CrossRefPubMedGoogle Scholar
  150. 150.
    Laufs U, Kilter H, Konkol C, Wassmann S, Bohm M, Nickenig G: Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 53: 911–920, 2002CrossRefPubMedGoogle Scholar
  151. 151.
    Weis M, Heeschen C, Glassford AJ, Cooke JP: Statins have biphasic effects on angiogenesis. Circulation 105: 739–745, 2002CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Masuko Ushio-Fukai
    • 1
  • R. Wayne Alexander
    • 1
  1. 1.Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaUSA

Personalised recommendations