Advertisement

Molecular and Cellular Biochemistry

, Volume 264, Issue 1–2, pp 3–11 | Cite as

Growth factor activation in myocardial vascularization: Therapeutic implications

  • Robert J. Tomanek
  • Wei Zheng
  • Xinping Yue
Article

Abstract

A rapid growth of the coronary vasculature occurs during prenatal and early postnatal periods as precursor cells from the epi- and sub-epicardium differentiate, migrate and form vascular structures (vasculogenesis) which then fuse, branch and in some cases recruit cells to form three tunics (angiogenesis). These processes are tightly controlled by temporally and spatially expressed growth factors which are stimulated by metabolic and mechanical factors. The process of angiogenesis in the myocardium is not limited to developmental periods of life, but may occur when the heart is challenged by enhanced loading conditions or during hypoxia or ischemia. This review focuses on the activation of growth factors by metabolic and mechanical stimuli in the developing heart and in the adult heart undergoing adaptive responses. Experimental studies support the hypotheses that both metabolic (hypoxia) and mechanical (stretch) factors serve as powerful stimuli for the up-regulation of growth factors which facilitate angiogenesis and arteriogenesis. Both hypoxia and stretch are powerful inducers of VEGF and its receptors, and provide for paracrine and autocrine signaling. In addition to the VEGF family, bFGF and angiopoietins play major roles in myocardial vascularization. Sufficient evidence supports the hypothesis that mechanical (e.g., bradycardia) and metabolic (e.g., thyroxine analogs) may provide effective non-invasive angiogenic therapies for the ischemic and post-infarcted heart. (Mol Cell Biochem 264: 3–11, 2004)

angiopoietins bFGF hypoxia shear stress stretch VEGF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hudlicka O, Brown M, Egginton S: Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72: 369–417, 1992PubMedGoogle Scholar
  2. 2.
    Adair TH, Gay WJ, Montani JP: Growth regulation of the vascular system: Evidence for a metabolic hypothesis. Am J Physiol 259: R393–R404, 1990PubMedGoogle Scholar
  3. 3.
    Schaper W: New paradigms for collateral vessel growth. Basic Res Cardiol 88: 193–198, 1993PubMedGoogle Scholar
  4. 4.
    Tomanek RJ, Sandra A, Zheng W, Brock T, Bjercke RJ, Holifield JS: Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res 88: 1135–1141, 2001PubMedGoogle Scholar
  5. 5.
    Tomanek RJ, Zheng W, Peters KG, Lin P, Holifield JS, Suvarna PR: Multiple growth factors regulate coronary embryonic vasculogenesis. Dev Dyn 221: 265–273, 2001CrossRefPubMedGoogle Scholar
  6. 6.
    Ikuta T, Ariga H, Matsumoto KI: Effect of tenascin-X together with vascular endothelial growth factor A on cell proliferation in cultured embryonic hearts. Biol Pharm Bull 24: 1320–1323, 2001CrossRefPubMedGoogle Scholar
  7. 7.
    Lagercrantz J, Farnebo F, Larsson C, Tvrdik T, Weber G, Piehl F: A comparative study of the expression patterns for vegf, vegf-b/vrf and vegf-c in the developing and adult mouse. Biochim Biophys Acta 1398: 157–163, 1998PubMedGoogle Scholar
  8. 8.
    Makinen T, Olofsson B, Karpanen T, Hellman U, Soker S, Klagsbrun M, Eriksson U, Alitalo K: Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J Biol Chem 274: 21217–21222, 1999CrossRefPubMedGoogle Scholar
  9. 9.
    Lymboussaki A, Olofsson B, Eriksson U, Alitalo K: Vascular endothe-lial growth factor (VEGF) and VEGF-C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult en-dothelia. Circ Res 85: 992–999, 1999PubMedGoogle Scholar
  10. 10.
    Tomanek RJ, Holifield JS, Reiter RS, Sandra A, Lin JJ: Role of VEGF family members and receptors in coronary vessel formation. Dev Dyn 225: 233–240, 2002CrossRefPubMedGoogle Scholar
  11. 11.
    Tomanek RJ, Ratajska A, Kitten GT, Yue X, Sandra A: Vascular en-dothelial growth factor expression coincides with coronary vasculoge-nesis and angiogenesis. Dev Dyn 215: 54–61, 1999CrossRefPubMedGoogle Scholar
  12. 12.
    Tomanek RJ, Hu N, Phan B, Clark EB: Rate of coronary vascularization during embryonic chicken development is influenced by the rate of myocardial growth. Cardiovasc Res 41: 663–671, 1999CrossRefPubMedGoogle Scholar
  13. 13.
    Tomanek RJ, Haung L, Suvarna PR, O'Brien LC, Ratajska A, Sandra A: Coronary vascularization during development in the rat and its rela-tionship to basic fibroblast growth factor. Cardiovasc Res 31 Spec No.: E116-E126, 1996Google Scholar
  14. 14.
    Tomanek RJ: Formation of the coronary vasculature: A brief review. Cardiovasc Res 31 Spec No.: E46–E51, 1996CrossRefPubMedGoogle Scholar
  15. 15.
    Luttun A, Tjwa M, Carmeliet P: Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): Novel therapeutic targets for angiogenic disorders. Ann New York Acad Sci 979: 80–93, 2002Google Scholar
  16. 16.
    Iyer S, Acharya KR: Role of placenta growth factor in cardiovascular health. Trends Cardiovasc Med 12: 128–134, 2002CrossRefPubMedGoogle Scholar
  17. 17.
    Ziche M, Maglione D, Ribatti D, Morbidelli L, Lago CT, Battisti M, Paoletti I, Barra A, Tucci M, Parise G, Vincenti V, Granger HJ, Viglietto G, Persico MG: Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76: 517–531, 1997PubMedGoogle Scholar
  18. 18.
    Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M: VEGFR-1-selective VEGF homologue PlGF is arteriogenic: Evidence for a monocyte-mediated mechanism. Circ Res 92: 378–385, 2003CrossRefPubMedGoogle Scholar
  19. 19.
    Felmeden DC, Blann AD, Lip GY: Angiogenesis: Basic pathophysiol-ogy and implications for disease. Eur Heart J 24: 586–603, 2003CrossRefPubMedGoogle Scholar
  20. 20.
    Salven P, Hattori K, Heissig B, Rafii S: Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J 16: 1471–1473, 2002PubMedGoogle Scholar
  21. 21.
    Koolwijk P, van Erck MG, de Vree WJ, Vermeer MA, Weich HA, Hane-maaijer R, van Hinsbergh VW: Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascu-lar endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 132: 1177–1188, 1996CrossRefPubMedGoogle Scholar
  22. 22.
    Gale NW, Yancopoulos GD: Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13: 1055–1066, 1999PubMedGoogle Scholar
  23. 23.
    Rossant J, Howard L: Signaling pathways in vascular development. Annu Rev Cell Dev Biol 18: 541–573, 2002CrossRefPubMedGoogle Scholar
  24. 24.
    Visconti RP, Richardson CD, Sato TN: Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothe-lial growth factor (VEGF). Proc Natl Acad Sci USA 99: 8219–8224, 2002CrossRefPubMedGoogle Scholar
  25. 25.
    Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P: Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: An autocrine mechanism contributing to angiogenesis. J Cell Biol 141: 1659–1673, 1998CrossRefPubMedGoogle Scholar
  26. 26.
    Adair TH, Guyton AC, Montani JP, Lindsay HL, Stanek KA: Whole body structural vascular adaptation to prolonged hypoxia in chick em-bryos. Am J Physiol 252: H1228–H1234, 1987PubMedGoogle Scholar
  27. 27.
    Tomanek RJ, Lund DD, Yue X: Hypoxic induction of myocardial vas-cularization during development. In: R.C. Roach et al. (eds). Hypoxia: Through the Life Cycle. Kluwer Academic Press/Plenum Publishers, New York (in press)Google Scholar
  28. 28.
    Ryan HE, Lo J, Johnson RS: HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J 17: 3005–3015, 1998CrossRefPubMedGoogle Scholar
  29. 29.
    Maxwell PH, Ratcliffe PJ: Oxygen sensors and angiogenesis. Semin Cell Dev Biol 13: 29–37, 2002CrossRefPubMedGoogle Scholar
  30. 30.
    Levy AP: Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc Med 8: 246–250, 1998.10CrossRefPubMedGoogle Scholar
  31. 31.
    Mie Lee Y, Kim SH, Kim HS, Jin Son M, Nakajima H, Jeong Kwon H, Kim KW: Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem Biophys Res Commun 300: 241–246, 2003CrossRefPubMedGoogle Scholar
  32. 32.
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Se-menza GL: Activation of vascular endothelial growth factor gene tran-scription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604–4613, 1996PubMedGoogle Scholar
  33. 33.
    Li J, Shworak NW, Simons M: Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1alpha-dependent regula-tion of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. J Cell Sci 115: 1951–1959, 2002PubMedGoogle Scholar
  34. 34.
    Wahlander H, Haraldsson B, Friberg P: Myocardial capillary diffusion capacity in rat hearts with cardiac hypertrophy due to pressure and volume overload. Am J Physiol 265: H61–H68, 1993PubMedGoogle Scholar
  35. 35.
    Carabello BA, Nakano K, Ishihara K, Kanazawa S, Biederman RW, Spann JF Jr.: Coronary blood flow in dogs with contractile dysfunction due to experimental volume overload. Circulation 83: 1063–1075, 1991PubMedGoogle Scholar
  36. 36.
    Gascho JA, Mueller TM, Eastham C, Marcus ML: Effect of volume-overload hypertrophy on the coronary circulation awake dogs. Cardio-vasc Res 16: 288–292, 1982Google Scholar
  37. 37.
    Legault F, Rouleau JL, Juneau C, Rose C, Rakusan K: Functional and morphological characteristics of compensated and decompensated car-diac hypertrophy in dogs with chronic infrarenal aorto-caval fistulas. Circ Res 66: 846–859, 1990PubMedGoogle Scholar
  38. 38.
    Chen Y, Torry RJ, Baumbach GL, Tomanek RJ: Proportional arteriolar growth accompanies cardiac hypertrophy induced by volume overload. Am J Physiol 267: H2132–H2137, 1994PubMedGoogle Scholar
  39. 39.
    Poupa O, Rakusan K, Ostadal B: The effect of physical activity upon the heart of the vertebrates. Med Sport 4: 202–235, 1970Google Scholar
  40. 40.
    Mattfeldt T, Mall G: Growth of capillaries and myocardial cells in the normal rat heart. J Mol Cell Cardiol 19: 1237–1246, 1987PubMedGoogle Scholar
  41. 41.
    Hudlicka O, Brown MD: Postnatal growth of the heart and its blood vessels. J Vasc Res 33: 266–287, 1996PubMedGoogle Scholar
  42. 42.
    Hudlicka O, Brown MD, Walter H, Weiss JB, Bate A: Factors involved in capillary growth in the heart. Mol Cell Biochem 147: 57–68, 1995CrossRefPubMedGoogle Scholar
  43. 43.
    Brown MD, Davies MK, Hudlicka O: The effect of long-term bradycar-dia on heart microvascular supply and performance. Cell Mol Biol Res 40: 137–142, 1994PubMedGoogle Scholar
  44. 44.
    Wright AJ, Hudlicka O: Capillary growth and changes in heart perfor-mance induced by chronic bradycardial pacing in the rabbit. Circ Res 49: 469–478, 1981PubMedGoogle Scholar
  45. 45.
    Zheng W, BrownMD, Brock TA, Bjercke RJ, Tomanek RJ: Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res 85: 192–198, 1999PubMedGoogle Scholar
  46. 46.
    Hudlicka O, Wright AJ, Hoppeler H, Uhlmann E: The effect of chronic bradycardial pacing on the oxidative capacity in rabbit hearts. Respir Physiol 72: 1–12, 1988CrossRefPubMedGoogle Scholar
  47. 47.
    Lei L, Christensen LP, Zhou R, Tomanek RJ: Induction of chronic brady-cardia after infarction upregulates bFGF and VEGF and myocardial angiogenesis. Circulation 106: II-215, 2002Google Scholar
  48. 48.
    Li J, Hampton T, Morgan JP, Simons M: Stretch-induced VEGF expres-sion in the heart. J Clin Invest 100: 18–24, 1997PubMedGoogle Scholar
  49. 49.
    Seko Y, Takahashi N, Shibuya M, Yazaki Y: Pulsatile stretch stimulates vascular endothelial growth factor (VEGF) secretion by cultured rat cardiac myocytes. Biochem Biophys Res Commun 254: 462–465, 1999CrossRefPubMedGoogle Scholar
  50. 50.
    Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ: Mech-anisms of coronary angiogenesis in response to stretch: Role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol 280: H909-H917, 2001Google Scholar
  51. 51.
    Hudlicka O, Brown MD: Physical forces and angiogenesis. In: G.M. Rubanyi (eds). Mechanoreception by the Vascular Wall. Futura Pub-lishing Co. Inc., Mount Kisko, NY, 1993, pp 197–241.Google Scholar
  52. 52.
    Tomanek RJ, Torry RJ: Growth of the coronary vasculature in hyper-trophy: mechanisms and model dependence. Cell Mol Biol Res 40: 129–136, 1994PubMedGoogle Scholar
  53. 53.
    Mall G, Mattfeldt T, Volk B: Ultrastructural morphometric study on the rat heart after chronic ethanol feeding. Virchows Arch A Pathol Anat Histol 389: 59–77, 1980CrossRefPubMedGoogle Scholar
  54. 54.
    Tornling G: Capillary neoformation in the heart and skeletal muscle during dipyridamole-treatment and exercise. Acta Pathol Microbiol Im-munol Scand Suppl 278: 1–63, 1982Google Scholar
  55. 55.
    Ziada AM, Hudlicka O, Tyler KR, Wright AJ: The effect of long-term vasodilatation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc Res 18: 724–732, 1984PubMedGoogle Scholar
  56. 56.
    Granger HJ, Ziche M, Hawker JR Jr, Meininger CJ, Czisny LE, Zawieja DC: Molecular and cellular basis of myocardial angiogenesis. Cell Mol Biol Res 40: 81–85, 1994PubMedGoogle Scholar
  57. 57.
    Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R: Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99: 2625–2634, 1997PubMedGoogle Scholar
  58. 58.
    Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC: Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100: 3131–3139, 1997PubMedGoogle Scholar
  59. 59.
    Papapetropoulos A, Desai KM, Rudic RD, Mayer B, Zhang R, Ruiz-Torres MP, Garcia-Cardena G, Madri JA, Sessa WC: Nitric ox-ide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro. Am J Pathol 150: 1835–1844, 1997PubMedGoogle Scholar
  60. 60.
    Pipili-Synetos E, Sakkoula E, Haralabopoulos G, Andriopoulou P, Peristeris P, Maragoudakis ME: Evidence that nitric oxide is an en-dogenous antiangiogenic mediator. Br J Pharmacol 111: 894–902, 1994PubMedGoogle Scholar
  61. 61.
    Skalak TC, Price RJ: The role of mechanical stresses in microvascular remodeling. Microcirculation 3: 143–165, 1996PubMedGoogle Scholar
  62. 62.
    Langille BL: Remodeling of developing and mature arteries: Endothe-lium, smooth muscle, and matrix. J Cardiovasc Pharmacol 21: S11-S17, 1993Google Scholar
  63. 63.
    Laughlin MH, McAllister RM: Exercise training-induced coronary vas-cular adaptation. J Appl Physiol 73: 2209–2225, 1992PubMedGoogle Scholar
  64. 64.
    Laughlin MH, Oltman CL, Bowles DK: Exercise training-induced adap-tations in the coronary circulation. Med Sci Sports Exerc 30: 352–360, 1998PubMedGoogle Scholar
  65. 65.
    Crisman RP, Rittman B, Tomanek RJ: Exercise-induced myocardial capillary growth in the spontaneously hypertensive rat. Microvasc Res 30: 185–194, 1985CrossRefPubMedGoogle Scholar
  66. 66.
    Tomanek RJ: Exercise-induced coronary angiogenesis: A review. Med Sci Sports Exerc 26: 1245–1251, 1994PubMedGoogle Scholar
  67. 67.
    Waltenberger J: Modulation of growth factor action: Implications for the treatment of cardiovascular diseases. Circulation 96: 4083–4094, 1997PubMedGoogle Scholar
  68. 68.
    Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM: Gene therapy for myocardial an-giogenesis: Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98: 2800–2804, 1998PubMedGoogle Scholar
  69. 69.
    Sellke FW, Ruel M: Vascular growth factors and angiogenesis in cardiac surgery. Ann Thorac Surg 75: S685-S690, 2003Google Scholar
  70. 70.
    Isner JM: Myocardial gene therapy. Nature 415: 234–239, 2002CrossRefPubMedGoogle Scholar
  71. 71.
    Morishita R, Aoki M, Kaneda Y, Ogihara T: Gene therapy in vascular medicine: Recent advances and future perspectives. Pharmacol Ther 91: 105–114, 2001CrossRefPubMedGoogle Scholar
  72. 72.
    Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Ham-mond HK, Laham RJ, Li W, Pike M, Sellke FW, Stegmann TJ, Udelson JE, Rosengart TK: Clinical trials in coronary angiogenesis: Issues, problems, consensus: An expert panel summary. Circulation 102: E73-E86, 2000Google Scholar
  73. 73.
    Kornowski R, Fuchs S, Leon MB, Epstein SE: Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 101: 454–458, 2000PubMedGoogle Scholar
  74. 74.
    van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W: Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res 49: 543–553, 2001PubMedGoogle Scholar
  75. 75.
    Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT, Semenza GL: Impaired physiological responses to chronic hypoxia in mice partially defi-cient for hypoxia-inducible factor 1alpha. J Clin Invest 103: 691–696, 1999PubMedGoogle Scholar
  76. 76.
    Tomanek RJ, Schatteman GC: Angiogenesis: New insights and thera-peutic potential. Anat Rec 261: 126–135, 2000PubMedGoogle Scholar
  77. 77.
    Wang X, Zheng W, Christensen LP, Tomanek RJ: DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. Am J Physiol Heart Circ Physiol 284: H613-H618, 2003Google Scholar
  78. 78.
    Mahaffey KW, Raya TE, Pennock GD, Morkin E, Goldman S: Left ven-tricular performance and remodeling in rabbits after myocardial infarc-tion. Effects of a thyroid hormone analogue. Circulation 91: 794–801, 1995PubMedGoogle Scholar
  79. 79.
    Hoit BD, Pawloski-Dahm CM, Shao Y, Gabel M, Walsh RA: The ef-fects of a thyroid hormone analog on left ventricular performance and contractile and calcium cycling proteins in the baboon. Proc Assoc Am Physicians 109: 136–145, 1997PubMedGoogle Scholar
  80. 80.
    Schaper W: The Collateral Circulation of the Heart. Amsterdam, London. Elsevier North Holland Publishing Company, 1971Google Scholar
  81. 81.
    Zheng W, Weiss RM, Wang X, Zhou R, Arlen A, Lei L, Lazartiques E, Tomanek RJ: DITPA stimulates arteriolar growth and modifies myocar-dial post infarction remodeling. Am J Physiology 286: H1994-H2000, 2004Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Robert J. Tomanek
    • 1
    • 2
  • Wei Zheng
    • 1
    • 2
  • Xinping Yue
    • 1
    • 2
  1. 1.Department of Anatomy and Cell BiologyUniversity of IowaIowa CityUSA
  2. 2.The Cardiovascular CenterUniversity of IowaIowa CityUSA

Personalised recommendations