Molecular and Cellular Biochemistry

, Volume 259, Issue 1–2, pp 115–129

Liver fatty acid binding protein expression enhances branched-chain fatty acid metabolism

  • Barbara P. Atshaves
  • Stephen M. Storey
  • Huan Huang
  • Friedhelm Schroeder


Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3−3H] phytanic acid 3.5− and 1.5−fold, respectively. This enhancement was not due to increased [2,3−3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10−3H] palmitic acid 2.2−fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3−fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7−fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3−3H] phytanic acid esterification, but increased [9,10−3H] palmitic acid esterification 4.5−fold, primarily into phospholipids (3.7−fold) and neutral lipids (9−fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.

L-FABP fatty acids phytanic acid palmitic acid fatty acid oxidation fatty acid uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolfrum C, Ellinghaus P, Fobker M, Seedorf U, Assmann G, Borchers T, Spener F: Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. J Lipid Res 40: 708-714, 1999PubMedGoogle Scholar
  2. 2.
    McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F: Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 40: 1371-1383, 1999PubMedGoogle Scholar
  3. 3.
    Schroeder F, Atshaves BP, Starodub O, Boedeker AL, Smith R, Roths JB, Foxworth WB, Kier AB: Expression of liver fatty acid binding protein alters growth and differentiation of embryonic stem cells. Mol Cell Biochem 219: 127-138, 2001CrossRefPubMedGoogle Scholar
  4. 4.
    Starodub OT: Intracellular localization and functional implications of sterol carrier protein-2 (SCP-2) gene products and liver fatty acid binding protein (L-FABP) in transfected L-cell fibroblasts. Texas A&M University, College Station, TX 77843-4466, 2002Google Scholar
  5. 5.
    Prows DR, Murphy EJ, Schroeder F: Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-Cells. Lipids 30: 907-910, 1995PubMedGoogle Scholar
  6. 6.
    Murphy EJ, Prows DR, Jefferson JR, Schroeder F: Liver fatty acid binding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Biochim Biophys Acta 1301: 191-198, 1996PubMedGoogle Scholar
  7. 7.
    Prows DR, Schroeder F: Metallothionein-IIA promoter induction alters rat intestinal fatty acid binding protein expression, fatty acid uptake, and lipid metabolism in transfected L-cells. Arch Biochem Biophys 340: 135-143, 1997CrossRefPubMedGoogle Scholar
  8. 8.
    Murphy EJ: L-FABP and I-FABP expression increase NBD-stearate uptake and cytoplasmic diffusion in L-cells. Am J Physiol 38: G244-G249, 1998Google Scholar
  9. 9.
    Luxon BA, Weisiger RA: Sex differences in intracellular fatty acid transport: Role of cytoplasmic binding proteins. Am J Physiol 265: G831-G841, 1993PubMedGoogle Scholar
  10. 10.
    Weisiger RA: Cytoplasmic transport of lipids: Role of binding proteins. Comp Biochem Physiol 115B: 319-331, 1996Google Scholar
  11. 11.
    Weisiger RA: When is a carrier not a membrane carrier? The cytoplasmic transfer of amphipathic molecules. Hepatology 24: 1288-1295, 1998Google Scholar
  12. 12.
    Burrier RE, Manson CR, Brecher P: Binding of acyl-CoA to liver fatty acid binding protein: Effect on acyl-CoA synthesis. Biochim Biophys Acta 919: 221-230, 1987PubMedGoogle Scholar
  13. 13.
    McCormack M, Brecher P: Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes. Biochem J 244: 717-723, 1987PubMedGoogle Scholar
  14. 14.
    Haq RU, Shrago E, Christodoulides L, Ketterer B: Purification and characterization of fatty acid binding protein in mammalian lung. Exp Lung Res 9: 43-55, 1985PubMedGoogle Scholar
  15. 15.
    Ockner RK, Manning JA: Fatty acid binding protein. Role in esterification of absorbed long chain fatty acid in rat intestine. J Clin Invest 58: 632-641, 1976PubMedGoogle Scholar
  16. 16.
    Kawashima Y, Nakagawa S, Tachibana Y, Kozuka H: Effects of peroxisome proliferators on fatty acid-binding protein in rat liver. Biochim Biophys Acta 754: 21-27, 1983PubMedGoogle Scholar
  17. 17.
    Steinberg D: In: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle (eds), The Metabolic Basis of Inherited Disease. McGraw-Hill, New York, 1990, pp 1533-1550Google Scholar
  18. 18.
    Avigan J: The presence of phytanic acid in normal human and animal plasma. Biochim Biophys Acta 166: 391-394, 1966Google Scholar
  19. 19.
    Verhoeven NM, Wanders RJA: Poll-The BT, Saudubray JM, Jakobs C: The metabolism of phytanic acid and pristanic acid in man: A review. J Inher Metab Dis 21: 697-728, 1998PubMedGoogle Scholar
  20. 20.
    Wanders RJA, van Grunsven EG, Jansen GA: Lipid metabolism in peroxisomes: Enzymology, functions and dysfunctions of the fatty acid alpha-and beta-oxidation systems in humans. Biochem Soc Trans 28: 141-149, 2000PubMedGoogle Scholar
  21. 21.
    Frolov A, Cho TH, Murphy EJ, Schroeder F: Isoforms of rat liver fatty acid binding protein differ in structure and affinity for fatty acids and fatty acyl CoAs. Biochemistry 36: 6545-6555, 1997CrossRefPubMedGoogle Scholar
  22. 22.
    Frolov A, Miller K, Billheimer JT, Cho T-C, Schroeder F: Lipid specificity and location of the sterol carrier protein-2 fatty acid binding site: A fluorescence displacement and energy transfer study. Lipids 32: 1201-1209, 1997PubMedGoogle Scholar
  23. 23.
    Ellinghaus P, Wolfrum C, Assmann G, Spener F, Seedorf U: Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein-2-/sterol carrier protein x-deficient mice. J Biol Chem 274: 2766-2772, 1999CrossRefPubMedGoogle Scholar
  24. 24.
    Lemotte PK, Keidel S, Apfel CM: Phytanic acid is a retinoid X receptor ligand. Eur J Biochem 236: 328-333, 1996CrossRefPubMedGoogle Scholar
  25. 25.
    Huang H, Starodub O, McIntosh A, Kier AB, Schroeder F: Liver fatty acid binding protein targets fatty acids to the nucleus: Real-time confocal and multiphoton fluorescence imaging in living cells. J Biol Chem 277: 29139-29151, 2002CrossRefPubMedGoogle Scholar
  26. 26.
    Atshaves BP, Storey SM, Petrescu AD, Greenberg CC, Lyuksyutova OI, Smith R, Schroeder F: Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L-cell fibroblasts. Am J Physiol 283: C688-C703, 2002Google Scholar
  27. 27.
    Seedorf U, Raabe M, Ellinghaus P, Kannenberg F, Fobker M, Engel T, Denis S, Wouters F, Wirtz KWA, Wanders RJA, Macda N, Assmann G: Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 12: 1189-1201, 1998PubMedGoogle Scholar
  28. 28.
    Stolowich NJ, Frolov A, Petrescu AD, Scott AI, Billheimer JT, Schroeder F: Holo-sterol carrier protein-2: 13C-NMR investigation of cholesterol and fatty acid binding sites. J Biol Chem 274: 35425-35433, 1999CrossRefPubMedGoogle Scholar
  29. 29.
    Frolov A, Cho TH, Billheimer JT, Schroeder F: Sterol carrier protein-2, a new fatty acyl coenzyme A-binding protein. J Biol Chem 271: 31878-31884, 1996CrossRefPubMedGoogle Scholar
  30. 30.
    Higuchi K: An improved chemically defined culture medium for strain L mouse cells based on growth responses to graded levels of nutrients including iron and zinc. J Cell Physiol 75: 65-72, 1970CrossRefPubMedGoogle Scholar
  31. 31.
    Jefferson JR, Slotte JP, Nemecz G, Pastuszyn A, Scallen TJ, Schroeder F: Intracellular sterol distribution in transfected mouse L-cell fibroblasts expressing rat liver fatty acid binding protein. J Biol Chem 266: 5486-5496, 1991PubMedGoogle Scholar
  32. 32.
    Gossett RE, Frolov AA, Roths JB, Behnke WD, Kier AB, Schroeder F: Acyl CoA binding proteins: Multiplicity and function. Lipids 31: 895-918, 1996PubMedGoogle Scholar
  33. 33.
    Zenger-Hain J, Craft DA, Rizzo WB: Diagnosis of inborn errors of phytanic acid oxidation using tritiated phytanic acid. Prog Clin Biol Res 375: 399-407, 1992PubMedGoogle Scholar
  34. 34.
    Folch J, Lees M, Sloane-Stanley GH: A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509, 1957PubMedGoogle Scholar
  35. 35.
    Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248-254, 1976CrossRefPubMedGoogle Scholar
  36. 36.
    Hara A, Radin NS: Lipid extraction of tissues with a low toxicity solvent. Anal Biochem 90: 420-426, 1978CrossRefPubMedGoogle Scholar
  37. 37.
    Burczynski FJ, Zhang MN, Pavletic P, Wang GQ: Role of fatty acid binding protein on hepatic palmitate uptake. Can J Physiol Pharmacol 75: 1350-1355, 1997CrossRefPubMedGoogle Scholar
  38. 38.
    Jolly CA, Murphy EJ, Schroeder F: Differential influence of rat liver fatty acid binding protein isoforms on phospholipid fatty acid composition: Phosphatidic acid biosynthesis and phospholipid fatty acid remodeling. Biochim Biophys Acta 1390: 258-268, 1998PubMedGoogle Scholar
  39. 39.
    Jolly CA, Wilton DA, Schroeder F: Microsomal fatty acyl CoA transacylation and hydrolysis: Fatty acyl CoA species dependent modulation by liver fatty acyl CoA binding proteins. Biochim Biophys Acta 1483: 185-197, 2000PubMedGoogle Scholar
  40. 40.
    Schroeder F, Jolly CA, Cho TH, Frolov AA: Fatty acid binding protein isoforms: Structure and function. Chem Phys Lipids 92: 1-25, 1998CrossRefPubMedGoogle Scholar
  41. 41.
    Moser HW, Moser AB: Peroxisomal disorders: Overview. In: J.K. Reddy, T. Suga, G.P. Mannaerts, P.B. Lazarow, S. Subramani (eds). Peroxisomes: Biology and Role in Toxicology and Disease. Ann NY Acad Sci, New York, 1996, pp 427-441Google Scholar
  42. 42.
    Moser AB, Rasmussen M, Naidu S, Watkins PA, McGuinness M, Hajra AK, Chen G, Raymond G, Liu A, Gordon D: Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J Pediatr 127: 13-22, 1995CrossRefPubMedGoogle Scholar
  43. 43.
    Steinberg SJ, Wang SJ, Kim DG, Mihalik SJ, Watkins PA: Human very long chain acyl CoA synthetase: Cloning, topography, and relevance to branched chain fatty acid metabolism. Biochem Biophys Res Commun 257: 615-621, 1999CrossRefPubMedGoogle Scholar
  44. 44.
    Bordewick U, Heese M, Borchers T, Robenek H, Spener F: Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis. Biol Chem Hoppe-Seyler 370: 229-238, 1989PubMedGoogle Scholar
  45. 45.
    Schroeder F, Jefferson JR, Powell D, Incerpi S, Woodford JK, Colles SM, Myers-Payne S, Emge T, Hubbell T, Moncecchi D, Prows DR, Heyliger CE: Expression of rat L-FABP in mouse fibroblasts: Role in fat absorption. Mol Cell Biochem 123: 73-83, 1993CrossRefPubMedGoogle Scholar
  46. 46.
    Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM: Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interaction. Biochemistry 39: 7197-7204, 2000CrossRefPubMedGoogle Scholar
  47. 47.
    Watkins PA, Howard AE, Mihalik SJ: Phytanic acid must be activated to phytanoyl-CoA prior to its alpha-oxidation in rat liver peroxisomes. Biochim Biophys Acta 1214: 288-294, 1994PubMedGoogle Scholar
  48. 48.
    Jolly CA, Hubbell T, Behnke WD, Schroeder F: Fatty acid binding protein: Stimulation of microsomal phosphatidic acid formation. Arch Biochem Biophys 341: 112-121, 1997CrossRefPubMedGoogle Scholar
  49. 49.
    Nemecz G, Schroeder F: Selective binding of cholesterol by recombinant fatty acid-binding proteins. J Biol Chem 266: 17180-17186, 1991PubMedGoogle Scholar
  50. 50.
    Chao H, Billheimer JT, Kier AB, Schroeder F: Microsomal long chain fatty acyl CoA transacylation: Differential effect of SCP-2. Biochim Biophys Acta 1439: 371-383, 1999PubMedGoogle Scholar
  51. 51.
    Murhpy EJ, Prows DR, Stiles T, Schroeder F: Liver and intestinal fatty acid binding protein expression increases phospholipid content and alters phospholipid fatty acid composition in L-cell fibroblasts. Lipids 35: 729-738, 2000PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Barbara P. Atshaves
    • 1
  • Stephen M. Storey
    • 1
  • Huan Huang
    • 1
  • Friedhelm Schroeder
    • 1
  1. 1.Department of Physiology and PharmacologyTexas A&M University, TVMC, College StationUSA

Personalised recommendations