Molecular and Cellular Biochemistry

, Volume 258, Issue 1–2, pp 211–218 | Cite as

Effect of angiotensin II type 2 receptor blockade on mitogen activated protein kinases during myocardial ischemia-reperfusion

  • Dinender Kumar
  • Vijayan Menon
  • William R. Ford
  • Alexander S. Clanachan
  • Bodh I. Jugdutt


Mitogen-activated protein kinases (MAPKs) have been implicated during ischemia-reperfusion (IR) and angiotensin II (AngII) type 2 receptor (AT2R) blockade has been shown to induce cardioprotection involving protein kinase Cε-(PKCε) signaling after IR. We examined whether the 3 major MAPKs, p38, c-Jun NH2-terminal kinase (JNK-1 and JNK-2), and extracellular signal regulated kinases (ERK-1 and ERK-2) are activated after IR and whether treatment with the AT2R antagonist PD123,319 (PD) alters their expression. Isolated rat hearts were randomized to control (aerobic perfusion, 80 min), IR (no drug; 50 min of perfusion, 30 min global ischemia and 30 min reperfusion; working mode), and IR + PD (0.3 μmol/l) and left ventricular (LV) work was measured. We measured LV tissue content of p38, p-p38, p-JNK-1 (54 kDa), p-JNK-2 (46 kDa), p-ERK-1 (44 kDa), p-ERK-2 (42 kDa) and PKCε proteins by immunoblotting and cGMP by enzyme immunoassay. IR resulted in significant LV dysfunction, increase in p-p38 and p-JNK-1/-2, no change in p-ERK-1/-2 or PKCε, and decrease in cGMP. PD improved LV recovery after IR, induced a slight increase in p-p38 (p < 0.01 vs. control), normalized p-JNK-1, did not change p-ERK-1/-2, and increased PKCε and cGMP. The overall results suggest that p38 and JNK might play a significant role in acute IR injury and the cardioprotective effect of AT2R blockade independent of ERK. The activation of p38 and JNKs during IR may be linked, in part, to AT2R stimulation.

ischemia-reperfusion AT2 receptor p38 JNK-1/-2 ERK-1/-2 PKCε/cGMP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yoshiyama M, Kim S, Yamagishi H, Omura T, Tani T, Yanagi S, Toda I, Teragaki M, Akioka K, Takeuchi K, Takeda T: Cardioprotective effect of the angiotensin II type 1 receptor antagonist TCV-116 on ischemia-reperfusion injury. Am Heart J 128: 1–6, 1994Google Scholar
  2. 2.
    Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD: Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45: 205–251, 1993Google Scholar
  3. 3.
    Matsubara H: Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83: 1182–1191, 1998Google Scholar
  4. 4.
    Horiuchi M, Akishita M, Dzau VJ: Recent progress in angiotensin type 2 receptor research in the cardiovascular system. Hypertension 33: 613–621, 1999Google Scholar
  5. 5.
    Yamada T, Horiuchi M, Dzau VJ: Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93: 156–160, 1996Google Scholar
  6. 6.
    Ford WR, Clanachan AS, Jugdutt BI: Opposite effects of angiotensin AT1 and AT2 receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 94: 3087–3089, 1996Google Scholar
  7. 7.
    Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M: Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95: 46–54, 1995Google Scholar
  8. 8.
    Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M, Fowler MB: AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 95: 1201–1206, 1997Google Scholar
  9. 9.
    Xu Y. Kumar D, Dyck J, Ford WR, Clanachan AS, Lopaschuk GD, Jugdutt BI: AT1 and AT2 receptor expression and blockade after acute ischemia-reperfusion in isolated working rat hearts. Am J Physiol 282: H1206–H1215, 2002Google Scholar
  10. 10.
    Xu Y, Clanachan AS, Jugdutt BI: Enhanced expression of angiotensin II type 2 receptor, inositol 1,4, 5-trisphosphate receptor, and protein kinase Cε during cardioprotection induced by angiotensin II type 2 receptor blockade. Hypertension 36: 506–510, 2000Google Scholar
  11. 11.
    Gohlke P, Pees C, Unger T: AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension 31: 349–355, 1998Google Scholar
  12. 12.
    Jalowy A, Schulz R, Dorge H, Behrends M, Heush G: Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2 receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 32: 1787–1796, 1998Google Scholar
  13. 13.
    Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA: Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99: 1926–1935, 1997Google Scholar
  14. 14.
    Xu Y, Menon V, Jugdutt BI: Cardioprotection after angiotensin II type 1 blockade involves angiotensin II type 2 receptor expression and activation of protein kinase C-ε in acutely reperfused myocardial infarction. Effect of UP269-6 and losartan on AT1 and AT2 receptor expression, and IP3 receptor and PKCε proteins. J Renin Angiotensin Aldosterone Syst 1: 184–195, 2000Google Scholar
  15. 15.
    Moudgil R, Menon V, Xu Y, Musat-Marcu S, Kumar D, Jugdutt BI: Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in working rat hearts. J Hypertens 19: 1121–1129, 2001Google Scholar
  16. 16.
    Moudgil R, Musat-Marcu S, Xu Y, Kumar D, Jugdutt BI: Increased AT2R protein expression but not increased apoptosis during cardioprotection induced by AT1R blockade. Can J Cardiol 18: 1107–1116, 2002Google Scholar
  17. 17.
    Gutkind JS: The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273: 1839–1842, 1998Google Scholar
  18. 18.
    Sugden PH, Clerk A: Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signal 9: 337–351, 1997Google Scholar
  19. 19.
    Hunyady L, Balla T, Catt KJ: The ligand binding site of the angiotensin AT1 receptor. Trends Pharmacol Sci 17: 135–140, 1996Google Scholar
  20. 20.
    Jugdutt BI, Balghith M: Enhanced regional AT2 receptor and PKCε expression during cardioprotection induced by AT1 receptor blockade after reperfused myocardial infarction. J Renin-Angiotensin Aldosterone Syst 2: 134–140, 2001Google Scholar
  21. 21.
    Cobb MH, Goldsmith EJ: How MAP kinases are regulated. J Biol Chem 270: 14843–14846, 1995Google Scholar
  22. 22.
    Ushio-Fukai M, Alexander RW, Akers M, Griendling KK: p38 Mitogen-activated protein kinase is a critical component of the redoxsensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273: 15022–15029, 1998Google Scholar
  23. 23.
    Hayashida W, Kihara Y, Yasaka A, Inagaki K, Iwanaga Y, Sasayama S: Stage-specific differential activation of mitogen-activated protein kinases in hypertrophied and failing rat hearts. J Mol Cell Cardiol 33: 733–744, 2001Google Scholar
  24. 24.
    Schmitz U, Ishida T, Ishida M, Surapisitchat J, Hasham MI, Pelech S, Berk BC: Angiotensin II stimulates p21-activated kinase in vascular smooth muscle cells: Role in activation of JNK. Circ Res 82: 1272–1278, 1998Google Scholar
  25. 25.
    Kudoh S, Komuro I, Mizuno T, Yamazaki T, Zou Y, Shiojima I, Takekoshi N, Yazaki Y: Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 80: 139–146, 1997Google Scholar
  26. 26.
    Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331, 1995Google Scholar
  27. 27.
    Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268: 14553–14556, 1993Google Scholar
  28. 28.
    Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y: Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100: 1813–1821, 1997Google Scholar
  29. 29.
    Wang X, Martindale JL, Liu Y, Holbrook NJ: The cellular response to oxidative stress: Influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333: 291–300, 1998Google Scholar
  30. 30.
    Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH: Inhibition of extracellular signalregulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86: 692–699, 2000Google Scholar
  31. 31.
    Sugden PH, Clerk A: Stress-responsive mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83: 345–352, 1998Google Scholar
  32. 32.
    Weinbrenner C, Liu GS, Cohen MV, Downey JM: Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J Mol Cell Cardiol 29: 2383–2391, 1997Google Scholar
  33. 33.
    Zhao TC, Hines DS, Kukreja RC: Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial K(ATP) channels. Am J Physiol 280: H1278–H1285, 2001Google Scholar
  34. 34.
    Sanada S, Kitakaze M, Papst PJ, Hatanaka K, Asanuma H, Aki T, Shinozaki Y, Ogita H, Node K, Takashima S, Asakura M, Yamada J, Fukushima T, Ogai A, Kuzuya T, Mori H, Terada N, Yoshida K, Hori M: Role of phasic dynamism of p38 mitogen-activated protein kinase activation in ischemic preconditioning of the canine heart. Circ Res 88: 175–180, 2001Google Scholar
  35. 35.
    Nakano A, Baines CP, Kim SO, Pelech SL, Downey JM, Cohen MV, Critz SD: Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: Evidence for involvement of p38 MAPK. Circ Res 86: 144–151, 2000Google Scholar
  36. 36.
    Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH: Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79: 162–173, 1996Google Scholar
  37. 37.
    Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273: 2161–2168, 1998Google Scholar
  38. 38.
    Clerk A, Michael A, Sugden PH: Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: A role in cardiac myocyte hypertrophy? J Cell Biol 142: 523–535, 1998Google Scholar
  39. 39.
    Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC, Banerjee S, Dawn B, Balafonova Z, Bolli R: Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: A signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 84: 587–604, 1999Google Scholar
  40. 40.
    Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Lorell BH: Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation 99: 22–25, 1999Google Scholar
  41. 41.
    Jugdutt BI: Role of AT1 receptor blockade in reperfused myocardial infarction. In: N. Dhalla (ed). Signal Transduction and Cardiac Hypertrophy. Kluwer Academic Publishers, Boston, 2002, pp 221–236Google Scholar
  42. 42.
    Kyriakis JM, Avruch J: Sounding the alarm: Protein kinase cascades activated by stress and inflammation. J Biol Chem 271: 24313–24316, 1996Google Scholar
  43. 43.
    Paul A, Wilson S, Belham CM, Robinson CJ, Scott PH, Gould GW, Plevin R: Stress-activated protein kinases: Activation, regulation and function. Cell Signal 9: 403–410, 1997Google Scholar
  44. 44.
    Sadoshima J, Qiu Z, Morgan JP, Izumo S: Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Circ Res 76: 1–15, 1995Google Scholar
  45. 45.
    Hayashida W, Horiuchi M, Dzau VJ: Intracellular third loop domain of angiotensin II type-2 receptor. Role in mediating signal transduction and cellular function. J Biol Chem 271: 21985–21992, 1996Google Scholar
  46. 46.
    Izumi Y, Kim S, Zhan Y, Namba M, Yasumoto H, Iwao H: Important role of angiotensin II-mediated c-Jun NH(2)-terminal kinase activation in cardiac hypertrophy in hypertensive rats. Hypertension 36: 511–516, 2000Google Scholar
  47. 47.
    Thomas WG, Thekkumkara TJ, Baker KM: Cardiac effects of AII. AT1A receptor signaling, desensitization, and internalization. Adv Exp Med Biol 396: 59–69, 1996Google Scholar
  48. 48.
    Thorburn J, Frost JA, Thorburn A: Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy. J Cell Biol 126: 1565–1572, 1994Google Scholar
  49. 49.
    Post GR, Goldstein D, Thuerauf DJ, Glembotski CC, Brown JH: Dissociation of p44 and p42 mitogen-activated protein kinase activation from receptor-induced hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 271: 8452–8457, 1996Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Dinender Kumar
    • 1
  • Vijayan Menon
    • 1
  • William R. Ford
    • 1
  • Alexander S. Clanachan
    • 1
  • Bodh I. Jugdutt
    • 1
  1. 1.Cardiology Division of the Department of Medicine and the Cardiovascular Research Group, Faculty of MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations