Molecular and Cellular Biochemistry

, Volume 256, Issue 1–2, pp 107–115

VDAC: The channel at the interface between mitochondria and the cytosol

  • Marco Colombini


The mitochondrial outer membrane is not just a barrier but a site of regulation of mitochondrial function. The VDAC family of proteins are the major pathways for metabolite flux through the outer membrane. These can be regulated in a variety of ways and the integration of these regulatory inputs allows mitochondrial metabolism to be adjusted to changing cellular conditions. This includes total blockage of the flux of anionic metabolites leading to permeabilization of the outer membrane to small proteins followed by apoptotic cell death.

mitochondrion outer membrane apoptosis isoforms metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colombini M: A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279: 643–645, 1979Google Scholar
  2. 2.
    Lee A, Xu X, Blachly-Dyson E, Forte M, Colombini M: The role of yeast VDAC genes on the permeability of the mitochondrial outer membrane. J Membr Biol 161: 173–181, 1998CrossRefPubMedGoogle Scholar
  3. 3.
    Xu X, Decker W, Sampson MJ, Craigen WJ, Colombini M: Mouse VDAC isoforms expressed in yeast: Channel properties and their roles in mitochondrial outer membrane permeability. J Membr Biol 170: 89–102, 1999CrossRefPubMedGoogle Scholar
  4. 4.
    Colombini M, Blachly-Dyson E, Forte M: VDAC, a channel in the outer mitochondrial membrane. In: T. Narahashi (ed). Ion Channels, Vol. 4. Plenum Publishing Corp., New York, 1996, pp 169–202Google Scholar
  5. 5.
    Song J, Midson C, Blachly-Dyson E, Forte M, Colombini M: The topology of VDAC as probed by biotin modification. J Biol Chem 273: 24406–24413, 1998CrossRefPubMedGoogle Scholar
  6. 6.
    Mannella CA: Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol 121: 207–218, 1998CrossRefPubMedGoogle Scholar
  7. 7.
    Smack DP, Colombini M: Voltage-dependent channels found in the membrane fraction of corn mitochondria. Plant Physiol 79: 1094–1097, 1985Google Scholar
  8. 8.
    Elkeles A, Devos KM, Graur D, Zizi M, Breiman A: Multiple cDNAs of wheat voltage-dependent anion channels (VDAC): Isolation, differential expression, mapping and evolution. Plant Mol Biol 29: 109–124, 1995CrossRefPubMedGoogle Scholar
  9. 9.
    Elkeles A, Breiman A, Zizi M: Functional differences among wheat voltage-dependent anion channel (VDAC) isoforms expressed in yeast. Indication for the presence of a novel VDAC-modulating protein? J Biol Chem 272: 6252–6260, 1997CrossRefPubMedGoogle Scholar
  10. 10.
    Linden M, Gellerfors P, Nelson BD: Purification of a protein having pore forming activity from the rat liver mitochondrial outer membrane. Biochem J 208: 77–82, 1982PubMedGoogle Scholar
  11. 11.
    Linden M, Gellerfors P: Hydrodynamic properties of porin isolated from outer membranes of rat liver mitochondria. Biochim Biophys Acta 736: 125–129, 1983PubMedGoogle Scholar
  12. 12.
    Colombini M: Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111: 103–111, 1989CrossRefPubMedGoogle Scholar
  13. 13.
    Colombini M: The pore size and properties of channels from mitochondria isolated from Neurospora crassa. J Membr Biol 53: 79–84, 1980CrossRefGoogle Scholar
  14. 14.
    Schein SJ, Colombini M, Finkelstein A: Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from Paramecium mitochondria. J Membr Biol 30: 99–120, 1976CrossRefPubMedGoogle Scholar
  15. 15.
    Ludwig O, Benz R, Schultz JE: Porin of Paramecium mitochondria isolation, characterization and ion selectivity of the closed state. Biochim Biophys Acta 978: 319–327, 1989PubMedGoogle Scholar
  16. 16.
    Song J, Colombini M: Indications of a common folding pattern for VDAC channels from all sources. J Bioenerg Biomembr 28: 153–161, 1996CrossRefPubMedGoogle Scholar
  17. 17.
    Blachly-Dyson E, Peng SZ, Colombini M, Forte M: Probing the structure of the mitochondrial channel, VDAC, by site-directed mutagenesis: A progress report. J Bioenerg Biomembr 21: 471–483, 1989CrossRefPubMedGoogle Scholar
  18. 18.
    Blachly-Dyson E, Peng SZ, Colombini M, Forte M: Alteration of the selectivity of the VDAC ion channel by site-directed mutagenesis: Implications for the structure of a membrane ion channel. Science 247: 1233–1236, 1990Google Scholar
  19. 19.
    Thomas L, Blachly-Dyson E, Colombini M, Forte M: Mapping of residues forming the voltage sensor of the VDAC ion channel. Proc Natl Acad Sci USA 90: 5446–5449, 1993PubMedGoogle Scholar
  20. 20.
    Thomas L, Kocsis E, Colombini M, Erbe E, Trus BL, Steven AC: Surface topography and molecular stoichiometry of the mitochondrial channel, VDAC, in crystalline arrays. J Struct Biol 106: 161–171, 1991CrossRefPubMedGoogle Scholar
  21. 21.
    Peng S, Blachly-Dyson E, Colombini M, Forte M: Determination of the number of polypeptide subunits in a functional VDAC channel from Saccharomyces cerevisiae. J Bioenerg Biomembr 24: 27–31, 1992CrossRefPubMedGoogle Scholar
  22. 22.
    Gincel D, Silberberg SD, Shoshan-Barmatz V: Modulation of the voltage-dependent anion channel (VDAC) by glutamate. J Bioenerg Biomembr 32: 571–583, 2000CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang DW, Colombini M: Inhibition by aluminum hydroxide of the voltage-dependent closure of the mitochondrial channel, VDAC. Biochim Biophys Acta 991: 68–78, 1989PubMedGoogle Scholar
  24. 24.
    Xu X, Forbes JG, Colombini M: Actin modulates the gating of Neurospora crassa VDAC. J Membr Biol 180: 73–81, 2001CrossRefPubMedGoogle Scholar
  25. 25.
    Sampson MJ, Ross L, Decker WK, Craigen WJ: A novel isoform of the mitochondrial outer membrane protein VDAC3 via alternative splicing of a 3-base exon. Functional characteristics and subcellular localization. J Biol Chem 273: 30482–30486, 1998CrossRefPubMedGoogle Scholar
  26. 26.
    Blachly-Dyson E, Song J, Wolfgang WJ, Colombini M, Forte M: Multicopy suppressors of phenotypes resulting from the absence of yeast VDAC encode a VDAC-like protein. Mol Cell Biol 17: 5727–5738, 1997PubMedGoogle Scholar
  27. 27.
    Sampson MJ, Lovell RS, Craigen WJ: The murine voltage-dependent anion channel gene family. Conserved structure and function. J Biol Chem 272: 18966–18973, 1997CrossRefPubMedGoogle Scholar
  28. 28.
    Wu S, Sampson MJ, Decker WK, Craigen WJ: Each mammalian mitochondrial outer membrane porin protein is dispensable: Effects on cellular respiration. Biochim Biophys Acta 1452: 68–78, 1999CrossRefPubMedGoogle Scholar
  29. 29.
    Sampson MJ, Decker WK, Beaudet AL, Ruitenbeek W, Armstrong D, Hicks MJ, Craigen WJ: Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem 276: 39206–39212, 2001CrossRefPubMedGoogle Scholar
  30. 30.
    Oliva M, De Pinto V, Barsanti P, Caggese C: A genetic analysis of the porin gene encoding a voltage-dependent anion channel protein in Drosophila melanogaster. Mol Genet Genomics 267: 746–756, 2002PubMedGoogle Scholar
  31. 31.
    Liu MY, Colombini M: Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochim Biophys Acta 1098: 255–260, 1992PubMedGoogle Scholar
  32. 32.
    Gincel D, Zaid H, Shoshan-Barmatz V: Calcium binding and translocation by the voltage-dependent anion channel: A possible regulatory mechanism in mitochondrial function. Biochem J 358: 147–155, 2001CrossRefPubMedGoogle Scholar
  33. 33.
    Peng S, Blachly-Dyson E, Colombini M, Forte M: Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel. Biophys J 62: 123–153, 1992PubMedGoogle Scholar
  34. 34.
    Song J, Midson C, Blachly-Dyson E, Forte M, Colombini M: The sensor regions of VDAC are translocated from within the membrane to the surface during the gating processes. Biophys J 74: 2926–2944, 1998PubMedGoogle Scholar
  35. 35.
    Zimmerberg J, Parsegian VA: Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323: 36–39, 1986Google Scholar
  36. 36.
    Colombini M, Yeung CL, Tung J, Konig T: The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim Biophys Acta 905: 279–286, 1987PubMedGoogle Scholar
  37. 37.
    Colombini M: Structure and mode of action of a voltage-dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann New York Acad Sci 341: 552–563, 1980Google Scholar
  38. 38.
    Zhang DW, Colombini M: Group IIIA-metal hydroxides indirectly neutralize the voltage sensor of the voltage-dependent mitochondrial channel, VDAC, by interacting with a dynamic binding site. Biochim Biophys Acta 1025: 127–134, 1990PubMedGoogle Scholar
  39. 39.
    Benz R, Kottke M, Brdiczka D: The cationically selective state of the mitochondrial outer membrane pore: A study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta 1022: 311–318, 1990PubMedGoogle Scholar
  40. 40.
    Hodge T, Colombini M: Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157: 271–279, 1997CrossRefPubMedGoogle Scholar
  41. 41.
    Rostovtseva T, Colombini M: VDAC channels mediate and gate the flow of ATP: Implication on regulation of mitochondrial function. Biophys J 72: 1954–1962, 1997PubMedGoogle Scholar
  42. 42.
    Colombini M: Voltage gating in VDAC: Toward a molecular mechanism. In: C. Miller (ed). Ion Channel Reconstitution, Section 4, Chapter 10. Plenum Press, New York, 1986Google Scholar
  43. 43.
    Zizi M, Thomas L, Blachly-Dyson E, Forte M, Colombini M: Oriented channel insertion reveals the motion of a transmembrane beta strand during voltage gating of VDAC. J Membr Biol 144: 121–129, 1995PubMedGoogle Scholar
  44. 44.
    Holden MJ, Colombini M: The mitochondrial outer membrane channel, VDAC, is modulated by a soluble protein. FEBS Lett 241: 105–109, 1988CrossRefPubMedGoogle Scholar
  45. 45.
    Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB: Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 97: 4666–4671, 2000CrossRefPubMedGoogle Scholar
  46. 46.
    Jonas EA, Buchanan J, Kaczmarek LK: Prolonged activation of mitochondrial conductances during synaptic transmission. Science 286: 1347–1350, 1999PubMedGoogle Scholar
  47. 47.
    Lemeshko SV, Lemeshko VV: Metabolically derived potential on the outer membrane of mitochondria: A computational model. Biophys J 79: 2785–2800, 2000PubMedGoogle Scholar
  48. 48.
    Lemeshko VV: Model of the outer membrane potential generation by the inner membrane of mitochondria. Biophys J 82: 684–692, 2002PubMedGoogle Scholar
  49. 49.
    Cortese JD, Voglino AL, Hackenbrock CR: The ionic strength of the intermembrane space of intact mitochondria is not affected by the pH or volume of the intermembrane space. Biochim Biophys Acta 1100: 189–197, 1992PubMedGoogle Scholar
  50. 50.
    Lee A, Zizi M, Colombini M: β-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6. J Biol Chem 269: 30974–30980, 1994PubMedGoogle Scholar
  51. 51.
    Zizi M, Forte M, Blachly-Dyson E, Colombini M: NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem 269: 1614–1616, 1994PubMedGoogle Scholar
  52. 52.
    Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M: Bcl-xL promotes the open configuration of VDAC and metabolite passage through the mitochondrial outer membrane. J Biol Chem 276: 19414–19419, 2001PubMedGoogle Scholar
  53. 53.
    Gellerich FN, Wagner M, Kapischke M, Wicker U, Brdiczka D: Effect of macromolecules on the regulation of the mitochondrial outer membrane pore and the activity of adenylate kinase in the inter-membrane space. Biochim Biophys Acta 1142: 217–227, 1993PubMedGoogle Scholar
  54. 54.
    Lee A, Xu X, Colombini M: The role of pyridine dinucleotides in regulating the permeability of the mitochondrial outer membrane. J Biol Chem 271: 26724–26731, 1996CrossRefPubMedGoogle Scholar
  55. 55.
    Florke H, Thinnes FP, Winkelbach H, Stadtmuller U, Paetzold G, Morys-Wortmann C, Hesse D, Sternbach H, Zimmermann B, Kaufmann-Kolle P et al.: Channel active mammalian porin, purified from crude membrane fractions of human B lymphocytes and bovine skeletal muscle, reversibly binds adenosine triphosphate (ATP). Biol Chem Hoppe Seyler 375: 513–520, 1994PubMedGoogle Scholar
  56. 56.
    Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M: Dynamics of nucleotides in VDAC channels: Structure-specific noise generation. Biophys J 82: 193–205, 2002PubMedGoogle Scholar
  57. 57.
    Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M: VDAC channels differentiate between natural metabolites and synthetic molecules. J Membr Biol 187: 147–156, 2002CrossRefPubMedGoogle Scholar
  58. 58.
    Bera AK, Ghosh S: Dual mode of gating of voltage-dependent anion channel as revealed by phosphorylation. J Struct Biol 135: 67–72, 2001CrossRefPubMedGoogle Scholar
  59. 59.
    Pical C, Fredlund KM, Petit PX, Sommarin M, Moller IM: The outer membrane of plant mitochondria contains a calcium-dependent protein kinase and multiple phosphoproteins. FEBS Lett 336: 347–351, 1993CrossRefPubMedGoogle Scholar
  60. 60.
    Liu M, Colombini M: Voltage gating of the mitochondrial outer membrane channel VDAC is regulated by a very conserved protein. Am J Physiol 260 (Cell Physiol 29): C371–C374, 1991PubMedGoogle Scholar
  61. 61.
    Liu MY, Torgrimson A, Colombini M: Characterization and partial purification of the VDAC-channel-modulating protein from calf liver mitochondria. Biochim Biophys Acta 1185: 203–212, 1994PubMedGoogle Scholar
  62. 62.
    Heiden M, Kroll K, Thinnes FP, Hilschmann N: Proteins of cytosol and amniotic fluid increase the voltage dependence of human type-1 porin. J Bioenerg Biomembr 28: 171–180, 1996CrossRefPubMedGoogle Scholar
  63. 63.
    Voloshchuk SG, Belikova YO, Klyushnik TP, Benevolensky DS, Saks VA: Comparative study of respiration kinetics and protein composition of skinned fibers from various types of rat muscle. Biochemistry (Mosc) 62: 155–158, 1998Google Scholar
  64. 64.
    Schwarzer C, Barnikol-Watanabe S, Thinnes FP, Hilschmann N: Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74. Int J Biochem Cell Biol 34: 1059–1070, 2002CrossRefPubMedGoogle Scholar
  65. 65.
    Le Mellay V, Troppmair J, Benz R, Rapp UR: Negative regulation of mitochondrial VDAC channels by C-Raf kinase. BMC Cell Biol 3: 14, 2002CrossRefPubMedGoogle Scholar
  66. 66.
    Mannella CA, Colombini M: Evidence that the crystalline arrays in the outer membrane of Neurospora mitochondria are composed of the voltage-dependent channel protein. Biochim Biophys Acta 774: 206–214, 1984PubMedGoogle Scholar
  67. 67.
    Szabo I, Zoratti M: The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett 330: 201–205, 1993CrossRefPubMedGoogle Scholar
  68. 68.
    Szabo I, De Pinto V, Zoratti M: The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett 330: 206–210, 1993CrossRefPubMedGoogle Scholar
  69. 69.
    Crompton M, Virji S, Ward JM: Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258: 729–735, 1998PubMedGoogle Scholar
  70. 70.
    Bernardi P, Petronilli V, Di Lisa F, Forte M: A mitochondrial perspective on cell death. Trends Biochem Sci 26: 112–117, 2001CrossRefPubMedGoogle Scholar
  71. 71.
    Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ, Forte M: Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L). Mol Cell Biol 20: 3125–3136, 2000CrossRefPubMedGoogle Scholar
  72. 72.
    Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie Z-H, Reed JC, Kroemer G: The permeability transition pore complex: A target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187: 1261–1271, 1998CrossRefPubMedGoogle Scholar
  73. 73.
    Halestrap AP, McStay GP, Clarke SJ: The permeability transition pore complex: Another view. Biochimie 84: 153–166, 2002CrossRefPubMedGoogle Scholar
  74. 74.
    Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB: Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3: 159–167, 1999CrossRefPubMedGoogle Scholar
  75. 75.
    Hoit D, McCarthy E, Zhang J, Ivanovska I, Hickman JA, Hardwick JM, Kaczmarek LK, Jonas EA: The Bcl-xL protein regulates synaptic transmission. Biophys J 82: 279a, 2002Google Scholar
  76. 76.
    Jonas EA, Hickman JA, Zhang J, Ivanovska I, Basanez G, McCarthy E, Zimmerberg J, Hardwick JM, Kaczmarek LK: Actions of Bcl-2 family proteins on mitochondria in synaptic terminals. Biophys J 82: 22a, 2002Google Scholar
  77. 77.
    Saito M, Korsmeyer SJ, Schlesinger PH: BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2: 553–555, 2000CrossRefPubMedGoogle Scholar
  78. 78.
    Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH: Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Diff 7: 1166–1173, 2000CrossRefPubMedGoogle Scholar
  79. 79.
    Kroemer G, Reed JC: Mitochondrial control of cell death. Nat Med 6: 513–519, 2000PubMedGoogle Scholar
  80. 80.
    Martinou JC, Green DR: Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2: 63–67, 2001CrossRefPubMedGoogle Scholar
  81. 81.
    Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD: Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331–342, 2002CrossRefPubMedGoogle Scholar
  82. 82.
    Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW: A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155: 725–731, 2001CrossRefPubMedGoogle Scholar
  83. 83.
    Siskind L, Colombini M: The lipids C2-and C16-ceramide form large stable channels: Implications for apoptosis. J Biol Chem 275: 38640–38644, 2000CrossRefPubMedGoogle Scholar
  84. 84.
    Siskind L, Kolesnick RN, Colombini M: Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277: 26796–26803, 2002CrossRefPubMedGoogle Scholar
  85. 85.
    Abrecht H, Goormaghtigh E, Ruysschaert JM, Homble F: Structure and orientation of two voltage-dependent anion-selective channel isoforms. An attenuated total reflection fourier-transform infrared spectroscopy study. J Biol Chem 275: 40992–40999, 2000CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Marco Colombini
    • 1
  1. 1.Department of BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations