Advertisement

Methodology And Computing In Applied Probability

, Volume 6, Issue 3, pp 323–341 | Cite as

Almost Sure Comparisons for First Passage Times of Diffusion Processes through Boundaries

  • L. Sacerdote
  • C. E. Smith
Article

Abstract

Conditions on the boundary and parameters that produce ordering in the first passage time distributions of two different diffusion processes are proved making use of comparison theorems for stochastic differential equations. Three applications of interest in stochastic modeling are presented: a sensitivity analysis for diffusion models characterized by means of first passage times, the comparison of different diffusion models where first passage times represent an important feature and the determination of upper and lower bounds for first passage time distributions.

diffusion process first passage time comparison theorem Feller process Ornstein–Uhlenbeck process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. D. Assaf, M. Shaked, and J. G. Shanthikumar, “1st passage times with PFR densities,” J. Appl. Prob. vol. 22 pp. 185–196, 1985.Google Scholar
  2. C. A. Ball and A. Roma, “A jump diffusion model for European monetary system,” Journal of International Money and Finance vol. 12, pp. 475–492, 1993Google Scholar
  3. A. Di Crescenzo and A. G. Nobile, “Diffusion approximation to a queueing system with time-dependent arrival and service rates,” Queueing Systems vol. 19 pp. 41–62, 1995.Google Scholar
  4. A. Di Crescenzo and L. M. Ricciardi, “Comparing failure times via diffusion models and likelihood ratio ordering,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences vol. E79-A pp. 1429–1432, 1996.Google Scholar
  5. A. Di Crescenzo and L. M. Ricciardi, “Comparing first-passage-times for semi-Markov skip-free processes,” Stat. Prob. Lett. vol. 30 pp. 247–256, 1996.Google Scholar
  6. A. Di Crescenzo and L. M. Ricciardi, “On a discrimination problem for a class of stochastic processes with ordered first-passage times,” Appl. Stoch. Models Bus. Ind. vol. 17 pp. 205–219, 2001.Google Scholar
  7. L. I. Gal'čuk and M. H. A. Davis, “A note on a comparison theorem for equations with different diffusions,” Stochastics vol. 6 pp. 147–149, 1982.Google Scholar
  8. V. Giorno, P. Lánský, A. G. Nobile, and L. M. Ricciardi, “Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death approach,” Biol. Cybern. vol. 58 pp. 387–404, 1988.Google Scholar
  9. V. Giorno, A. G. Nobile, L. M. Ricciardi, and S. Sato, “On the evaluation of first-passage-time probability densities via non-singular integral equations,” Adv. Appl. Prob. vol. 21 pp. 20–36, 1989.Google Scholar
  10. M. T. Giraudo and L. Sacerdote, “An improved technique for the simulation of first passage times for diffusion processes,” Commun. Statist.-Simula. vol. 28 pp. 1135–1163, 1999.Google Scholar
  11. M. T. Giraudo, L. Sacerdote, and C. Zucca, “A MonteCarlo method for the simulation of first passage times of diffusion processes,” Meth. Comp. Appl. Prob. vol. 3 pp. 215–231, 2001Google Scholar
  12. B. Hajek, “Mean stochastic comparison of diffusions,” Z. Wahrscheinlichkeits-theorie verw. Gebiete vol. 68 pp. 315–329, 1985.Google Scholar
  13. Z. Y. Huang, “A comparison theorem for solutions of stochastic differential equations and its applications,” Proc. A.M.S. vol. 91 pp. 611–617, 1984.Google Scholar
  14. N. Ikeda and S. Watanabe, “Stochastic differential equations and diffusion processes,” North Holland Math. Lib. 1989.Google Scholar
  15. S. Karlin and H. M. Taylor, A Second Course in Stochastic Processes, Academic Press, San Diego, 1981.Google Scholar
  16. P. Lánský, L. Sacerdote, and F. Tomassetti, “On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity,” Biol. Cybern. vol. 73 pp. 457–465, 1995.Google Scholar
  17. S. Lee and J. Lynch, “Total positivity of Markov chains and the failure rate character of some first passage times,” Adv. Appl. Prob. vol. 29 pp. 713–732, 1997.Google Scholar
  18. H. J. Li and M. Shaked, “On the first passage times for Markov-processes with monotone convex transition kernels,” Stoch. Proc. Appl. vol. 58 pp. 205–216, 1995.Google Scholar
  19. H. J. Li and M. Shaked, “Ageing first-passage times of Markov processes: A matrix approach,” J. Appl. Prob. vol. 34 pp. 1–13, 1997.Google Scholar
  20. S. Nakao, “Comparison theorems for solutions of one-dimensional stochastic differential equations,” Proceedings of the Second Japan-USSR Symposium on Probability Theory. Lecture Notes in Math., vol. 330, pp. 310–315, Springer: Berlin, 1973.Google Scholar
  21. A. G. Nobile, L. M. Ricciardi, and L. Sacerdote, “Exponential trends of first-passage-time densities for a class of diffusion processes with steady-state distribution,” J. Appl. Prob. vol. 22 pp. 611–618, 1985.Google Scholar
  22. G. L. O'Brien, “A new comparison theorem for solutions of stochastic differential equations,” Stochastics vol. 3 pp. 245–249, 1980.Google Scholar
  23. Y. Ouknine, “Comparison et non-confluence des solutions d'équations differentielles stochastiques unidimensionnelles,” Probab. Math. Statist. vol. 11 pp. 37–46, 1990.Google Scholar
  24. L. M. Ricciardi, Diffusion Processes and Related Topics in Biology. Lecture Notes in Biomathematics vol. 14, Springer Verlag: Berlin, 1977.Google Scholar
  25. L. M. Ricciardi and L. Sacerdote, “The Ornstein-Uhlenbeck process as a model for neuronal activity,” Biol. Cybern. vol. 35 pp. 1–9, 1979.Google Scholar
  26. L. M. Ricciardi and S. Sato, Diffusion processes and first-passage-time problems, Lectures in Applied Mathematics and Informatics, L. M. Ricciardi, Ed. Manchester University Press: Manchester, 1990Google Scholar
  27. L. Sacerdote and C. E. Smith, “A qualitative comparison of some diffusion models for neural activity via stochastic ordering,” Biol. Cybern. vol. 83 pp. 543–551, 2000.Google Scholar
  28. L. Sacerdote and C. E. Smith, “New parameter relationships determined via stochastic ordering for spike activity in a reversal potential neural model,” Biosystems vol. 58 pp. 59–65, 2000.Google Scholar
  29. S. Sato, “On the moments of the firing interval of the diffusion approximated model neuron,” Math. Biosci. vol. 39 pp. 53–70, 1978.Google Scholar
  30. M. Shaked and J. G. Shanthikumar, “On the 1st passage times of pure jump-processes,” J. Appl. Prob. vol. 20 pp. 427–446, 1988.Google Scholar
  31. M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic Press, Inc.: Boston, 1994.Google Scholar
  32. C. E. Smith, “A note on neuronal firing and input variability,” J. Theor. Biol. vol. 154 pp. 271–275, 1992.Google Scholar
  33. A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Pub. Comp., Inc.: MA, 1965.Google Scholar
  34. T. Yamada, “On a comparison theorem for solutions of stochastic differential equations and its applications,” J. Math. Kyoto Univ. vol. 13-3 pp. 497–512, 1973.Google Scholar
  35. T. Yamada and Y. Ogura, “On the strong comparison theorems for solutions of stochastic differential equations,” Z. Wahrsch. Verw. Gebiete vol. 56 pp. 3–19, 1981.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • L. Sacerdote
    • 1
  • C. E. Smith
    • 2
  1. 1.Dipartimento di MatematicaUniversità di TorinoTorinoItaly
  2. 2.Department of StatisticsNorth Carolina State UniversityRaleigh

Personalised recommendations