Molecular Biology

, Volume 38, Issue 3, pp 388–400 | Cite as

Phylogenetic Analysis of α-Galactosidases of the GH27 Family

  • D. G. Naumoff


Amino acid sequence analysis of α-galactosidases and other proteins of glycoside hydrolase family 27 (GH27) allowed isolation of three major subfamilies, 27a–27c. Unique isomalto-dextranase of Arthrobacter globiformis clustered separately. Eukaryotic proteins formed five clusters on a phylogenetic tree of the family. Bacterial GH27 proteins, which are relatively few, did not form stable clusters. A monophyletic origin of the GH27 family was demonstrated with the use of related proteins of the GH36 family. The structure of the active center and evolution of α-galactosidases are discussed.

α-galactosidase activity melibiase glycoside hydrolase carbohydrate utilization protein phylogenetic tree enzyme classification evolution multiple sequence alignment horizontal transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kochetkov N.K., Bochkov A.F., Dmitriev B.A., Usov A.I., Chizhov O.S., Shibaev V.N. 1967. Khimiya uglevodov (Carbohydrate chemistry). Moscow: Khimiya.Google Scholar
  2. 2.
    Khorlin A.Ya. 1974. Active centers of carbohydrases. In Struktura i funktsii aktivnykh tsentrov fermentov (Structure and functions of active centers of enzymes). Moscow: Nauka, 39-69.Google Scholar
  3. 3.
    Vidershain G.Ya. 1980. Biologicheskie osnovy glikozidozov (Biological basis of glycosidoses). Moscow: Meditsina.Google Scholar
  4. 4.
    Sinnott M.L. 1990. Catalytic mechanisms of enzymatic glycosyl transfer. Chem. Rev. 90, 1171-1202.Google Scholar
  5. 5.
    Naumov D.G., Doroshenko V.G. 1998. β-Fructosidases: A new superfamily of glycosyl hydrolases. Mol. Biol. 32, 902-907.Google Scholar
  6. 6.
    Naumoff D.G. 1999. Conserved sequence motifs in levansucrases and bifunctional β-xylosidases and α-Larabinases. FEBS Lett. 448, 177-179.Google Scholar
  7. 7.
    Naumoff D.G. 2001. β-Fructosidase superfamily: homology with some α-L-arabinases and β-D-xylosidases. Protein Struct. Funct. Genet. 42, 66-76.Google Scholar
  8. 8.
    Naumoff D.G. 2001. Sequence analysis of glycosylhydrolases: β-fructosidase and α-galactosidase superfamilies. Glycoconjugate J. 18, 109.Google Scholar
  9. 9.
    Pons T., Naumoff D.G., Martínez-Fleites C., Hernández L. 2004. Three acidic residues are at the active site of a β-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Protein Struct. Funct. Bioinform. 54, 424-432.Google Scholar
  10. 10.
    Dey P.M., Pridham J.B. 1972. Biochemistry of α-galactosidases. Adv. Enzymol. Relat. Areas Mol. Biol. 36, 91-130.Google Scholar
  11. 11.
    Koizumi K., Tanimoto T., Okada Y., Hara K., Fujita K., Hashimoto H., Kitahata S. 1995. Isolation and characterization of novel heterogeneous branched cyclomalto-oligosaccharides (cyclodextrins) produced by transgalactosylation with α-galactosidase from coffee bean. Carbohydr. Res. 278, 129-142.Google Scholar
  12. 12.
    Eneyskaya E.V., Golubev A.M., Kachurin A.M., Savel'ev A.N., Neustroev K.N. 1998. Transglycosylation activity of α-D-galactosidase from Trichoderma reesei. An investigation of the active site. Carbohydr. Res. 305, 83-91.Google Scholar
  13. 13.
    Spangenberg P., Andre C., Dion M., Rabiller C., Mattes R. 2000. Comparative study of new α-galactosidases in transglycosylation reactions. Carbohydr. Res. 329, 65-73.Google Scholar
  14. 14.
    Sripuan T., Aoki K., Yamamoto K., Tongkao D., Kumagai H. 2003. Purification and characterization of thermostable α-galactosidase from Ganoderma lucidum. Biosci. Biotechnol. Biochem. 67, 1485-1491.Google Scholar
  15. 15.
    Garman S.C., Hannick L., Zhu A., Garboczi D.N. 2002. The 1.9 Å structure of α-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Structure. 10, 425-434.Google Scholar
  16. 16.
    Fujimoto Z., Kaneko S., Momma M., Kobayashi H., Mizuno H. 2003. Crystal structure of rice α-galactosidase complexed with D-galactose. J. Biol. Chem. 278, 20313-20318.Google Scholar
  17. 17.
    Naumoff D.G. 2002. Sequence analysis and classification of α-galactosidases. Int. Summer School “From Genome to Life: Structural, Functional and Evolutionary Approaches”. Cargese, Corsica, France. P. 40. (http:// Scholar
  18. 18.
    Rigden D.J. 2002. Iterative database searches demonstrate that glycoside hydrolase families 27, 31, 36 and 66 share a common evolutionary origin with family 13. FEBS Lett. 523, 17-22.Google Scholar
  19. 19.
    Naumoff D.G. 2003. α-Galactosidase superfamily: phylogenetic analysis and homology with some α-glucosidases. Abstracts 5th Carbohydrate Bioengineering Meeting. Groningen, The Netherlands. P. 81. Abstract 32.Google Scholar
  20. 20.
    Halstead J.R., Fransen M.P., Eberhart R.Y., Park A.J., Gilbert H.J., Hazlewood G.P. 2000. α-Galactosidase A from Pseudomonas fluorescens supsp. cellulosa: cloning, high level expression and its role in galactomannan hydrolysis. FEMS Microbiol. Lett. 192, 197-203.Google Scholar
  21. 21.
    Luonteri E., Alatalo E., Siika-aho M., Penttilä M., Tenkanen M. 1998. α-Galactosidases of Penicillium simplicissimum: production, purification and characterization of the gene encoding AGLI. Biotechnol. Appl. Biochem. 28, 179-188.Google Scholar
  22. 22.
    Puchart V., Vršanská M., Bhat M.K., Biely P. 2000. Purification and characterization of α-galactosidase from a thermophilic fungus Thermomyces lanuginosus. Biochim. Biophys. Acta. 1524, 27-37.Google Scholar
  23. 23.
    Lytle B.L., Volkman B.F., Westler W.M., Wu J.H.D. 2000. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch. Biochem. Biophys. 379, 237-244.Google Scholar
  24. 24.
    Jindou S., Karita S., Fujino E., Fujino T., Hayashi H., Kimura T., Sakka K., Ohmiya K. 2002. α-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J. Bacteriol. 184, 600-604.Google Scholar
  25. 25.
    Naumoff D.G., Livshits V.A. 2001. Molecular structure of the Lactobacillus plantarum sucrose utilization locus: Comparison with Pediococcus pentosaceus. Mol. Biol. 35, 19-27.Google Scholar
  26. 26.
    Tonozuka T., Suzuki S., Ikehara Y., Mizuno M., Kim Y.-K., Nishikawa A., Sakano Y. 2004. Heterologous production and characterization of Arthrobacter globiformis T6 isomalto-dextranase. J. Appl. Glycoscience. 51, 27-32.Google Scholar
  27. 27.
    Naumov G.I., Naumoff D.G., Louis E.D. 1995. Location of the family of MEL genes (encoding α-galactosidase) in the right and left telomeres of the yeast Saccharomyces cerevisiae. Dokl. Akad. Nauk. 341, 134-136.Google Scholar
  28. 28.
    Naumov G.I., Naumov D.G. 1997. A superfamily of the α-galactosidase genes MEL in the yeast Saccharomyces cerevisiae. Dokl. Akad. Nauk. 353, 426-469.Google Scholar
  29. 29.
    Naumov G.I., Naumoff D.G. 1997. Genetic mapping of a new divergent family of α-galactosidase genes MEL in the yeast Saccharomyces cerevisiae. Biotekhnologiya. 1, 26-28.Google Scholar
  30. 30.
    Naumova E.S., Naumov G.I., Naumoff D.G., Korshunova I.V., Jakobsen M. 2001. Introgression between non-conventional Saccharomyces paradoxus species and S. cerevisiae: α-galactosidase genes MEL12-MEL15. Abstracts of 21st International Specialized Symposium on Yeasts “Biochemistry, Genetics, Biotechnology and Ecology of Non-conventional Yeasts”. Lviv, Ukraine. P. 57.Google Scholar
  31. 31.
    Naumov G.I., Naumova E.S., Naumoff D.G., Korshunova I.V., Jakobsen M. 2002. Divergent α-galactosidase genes MEL12-MEL15 in African indigenous strains of Saccharomyces cerevisiae. Abstracts of 22nd International Specialized Symposium on Yeasts “Yeast Fermentations and other Yeast Bioprocesses”. Pilanesberg National Park, South Africa. P. 135.Google Scholar
  32. 32.
    Hart D.O., He S., Chany C.J., Withers S.G., Sims P.F., Sinnott M.L., Brumer H. 2000. Identification of Asp—130 as the catalytic nucleophile in the main α-galactosidase from Phanerochaete chrysosporium, a family 27 glycosyl hydrolase. Biochemistry. 39, 9826-9836.Google Scholar
  33. 33.
    Ly H.D., Howard S., Shum K., He S., Zhu A., Withers S.G. 2000. The synthesis, testing and use of 5-fluoro-alpha-D-galactosyl fluoride to trap an intermediate on green coffee bean α-galactosidase and identify the catalytic nucleophile. Carbohydr. Res. 329, 539-547.Google Scholar
  34. 34.
    Zhu A., Wang Z.K., Goldstein J. 1995. Identification of tyrosine 108 in coffee bean α-galactosidase as an essential residue for the enzyme activity. Biochim. Biophys. Acta. 1247, 260-264.Google Scholar
  35. 35.
    Zhu A., Monahan C., Wang Z.K. 1996. Trp-16 is essential for the activity of α-galactosidase and α-N-acetylgalactosaminidase. Biochim. Biophys. Acta. 1297, 99-104.Google Scholar
  36. 36.
    Maranville E., Zhu A. 2000. Assessment of amino-acid substitutions at tryptophan 16 in α-galactosidase. Eur. J. Biochem. 267, 1495-1501.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • D. G. Naumoff
    • 1
  1. 1.State Research Center GosNIIgenetikaMoscowRussia

Personalised recommendations