Mathematical Notes

, Volume 76, Issue 3–4, pp 465–471

On Conjugacy p-Separability of Free Products of Two Groups with Amalgamation

  • E. A. Ivanova
Article

Abstract

It is proved that a free product of two finite p-groups with amalgamated central subgroups is a conjugacy p-separable group. With the help of this result, it is proved that a free product with amalgamated subgroups of two finitely generated Abelian groups is a residually finite p-group if and only if it is conjugacy p-separable.

residually finite group residually p-finite group free product with amalgamation conjugacy separable group conjugacy p-separable group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. L. Dyer, “Separating conjugates in amalgamated free products and HNN extensions,” Austral. Math. Soc. Ser. A, 29 (1980), 35–51.Google Scholar
  2. 2.
    G. Baumslag, “On the residual finiteness of generalised free products of nilpotent groups,” Trans. Amer. Math. Soc., 106 (1963), 193–209.Google Scholar
  3. 3.
    G. Higman, “Amalgams of p-groups,” J. Algebra, 1 (1964), 301–305.Google Scholar
  4. 4.
    D. N. Azarov and E. A. Ivanova, “On the residual nilpotence of a free product with amalgamation of locally nilpotent groups,” in: Nauch. Tr. IvGU. Ser. Matem. V. 2 [in Russian], Izd-vo IvGU, Ivanovo, 1999, pp. 5–7.Google Scholar
  5. 5.
    P. F. Stebe, “A residual property of certain groups,” Proc. Amer. Math. Soc., 26 (1970), 37–42.Google Scholar
  6. 6.
    R. Lyndon and P. E. Shupp, Combinatorial Group Theory, Springer-Verlag, Berlin-New York, 1977.Google Scholar
  7. 7.
    W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Dover Publ., New York, 1976.Google Scholar
  8. 8.
    B. H. Neumann, “An essay on free products of groups with amalgamations,” Philos. Trans. Roy. Soc. London Ser. A, 246 (1954), 503–554.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • E. A. Ivanova
    • 1
  1. 1.Ivanovo State Universityrussia

Personalised recommendations