Mathematical Notes

, Volume 74, Issue 5–6, pp 803–811 | Cite as

Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems

  • A. V. Zhiber
  • S. Ya. Startsev


We generalize the notions of Laplace transformations and Laplace invariants for systems of hyperbolic equations and study conditions for their existence. We prove that a hyperbolic system admits the Laplace transformation if and only if there exists a matrix of rank k mapping any vector whose components are functions of one of the independent variables into a solution of this system, where k is the defect of the corresponding Laplace invariant. We show that a chain of Laplace invariants exists only if the hyperbolic system has a entire collection of integrals and the dual system has a entire collection of solutions depending on arbitrary functions. An example is given showing that these conditions are not sufficient for the existence of a Laplace transformation.

Laplace transform Laplace invariant hyperbolic system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Darboux, Le¸cons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vols. 1–4, Gauthier-Villars, Paris, 1896.Google Scholar
  2. 2.
    F. Trikomi, Equazioni a Derivate Parziali, Cremonese, Roma, 1957.Google Scholar
  3. 3.
    A. V. Zhiber, V. V. Sokolov, and S. Ya. Startsev, “On the Darboux integrable nonlinear hyperbolic equations, ” Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.], 343 (1995), no. 6, 746–748.Google Scholar
  4. 4.
    V. V. Sokolov and A. V. Zhiber, “On the Darboux integrable hyperbolic equations, ” Phys. Lett. A, 208 (1995), 303–308.Google Scholar
  5. 5.
    I. M. Anderson and N. Kamran, “The variational bicomplex for second order scalar partial differential equations in the plane, ” Duke Math. J., 87 (1997), no. 2, 265–319.Google Scholar
  6. 6.
    I. M. Anderson and M. Juras, “Generalized Laplace invariant and the method of Darboux, ” Duke Math. J., 89 (1997), no. 2, 351–375.Google Scholar
  7. 7.
    S. P. Tsarev, “Factorization of linear differential operators with partial derivatives and the Darboux integration method for nonlinear partial differential equations, ” Teoret. Mat. Fiz. [Theoret. and Math. Phys.], 122 (2000), no. 1, 144–160.Google Scholar
  8. 8.
    S. Ya. Startsev, “On differential substitutions of the Mioura transformation type, ” Teoret. Mat. Fiz. [Theoret. and Math. Phys.], 116 (1998), no. 3, 336–348.Google Scholar
  9. 9.
    S. Ya. Startsev, “On hyperbolic equations which admit differential substitutions, ” Teoret. Mat. Fiz. [Theoret. and Math. Phys.], 127 (2001), no. 1, 63–74.Google Scholar
  10. 10.
    A. V. Zhiber and V. V. Sokolov, “Integrable equations of Liouville type, ” Uspekhi Mat. Nauk [Russian Math. Surveys], 56 (2001), no. 1, 63–106.Google Scholar
  11. 11.
    E. V. Ferapontov, “Laplace transformations of system of hydrodynamic type in Riemann invariants, ” Teoret. Mat. Fiz. [Theoret. and Math. Phys.], 110 (1997), no. 1, 86–98.Google Scholar
  12. 12.
    V. É. Adler and S. Ya. Startsev, “On discrete analogs of the Liouville equation, ” Teoret. Mat. Fiz. [Theoret. and Math. Phys.], 121 (1999), no. 2, 271–284.Google Scholar
  13. 13.
    S. Ya. Startsev, “On Laplace invariants of the systems of hyperbolic equations, ” in: Complex Analysis, Differential Equations, and Numerical Methods and Applications [in Russian], vol. 3, Institute of Mathematics and Computer Center of the Russian Academy of Sciences, Ufa, 1996, pp. 144–154.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. V. Zhiber
    • 1
  • S. Ya. Startsev
    • 1
  1. 1.Institute of Mathematics and Computer CenterRussian Academy of SciencesUfa

Personalised recommendations