Letters in Mathematical Physics

, Volume 68, Issue 2, pp 121–129 | Cite as

Eigenvalue-Dynamics off the Calogero–Moser System

  • Joakim Arnlind
  • Jens Hoppe


By finding N(N− 1)/2 suitable conserved quantities, free motions of real symmetric N×N matrices X(t), with arbitrary initial conditions, are reduced to nonlinear equations involving only the eigenvalues of X – in contrast to the rational Calogero-Moser system, for which [X(0),Xd(0)] has to be purely imaginary, of rank one.

eigenvalue dynamics symmetric matrix integrable systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnlind, J.and Hoppe, J.: Eigenvalue dynamics off Calogero-Moser, IHES Preprint P/03/41 (July 2003).Google Scholar
  2. 2.
    Bordemann, M. and Hoppe, J.: Hamiltonian Reductions off Calogero-Moser, in preparation.Google Scholar
  3. 3.
    Barucchi, G.and Regge, T.: Conformal properties of a class of exactly solvable N body systems in space dimension one, J.Math.Phys. 18 (1977), 1149.Google Scholar
  4. 4.
    Calogero, F.: Exactly solvable one-dimensional many-body problems, Lett.Nouvo Cimento 13 (1975), 411–416.Google Scholar
  5. 5.
    Calogero, F.: Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related 'solvable 'many-body problems, Nuovo Cimento 43B (1978), 117–241.Google Scholar
  6. 6.
    Calogero, F.: The 'neatest 'many-body problem amenable to exact treatment (a 'gold-fish '?), Physica D 152-153 (2001), 78–84.Google Scholar
  7. 7.
    Calogero, F.: A technique to identify solvable dynamical systems, and a solvable generalization of the goldfish many-body problem, Submitted to J.Math.Phys.Google Scholar
  8. 8.
    Gibbons, J. and Hermsen, T.: A generalization of the Calogero-Moser system, Physica D 11 (1984), 337–348.Google Scholar
  9. 9.
    Haake, F.: Quantum Signatures of Chaos, Springer-Verlag, Berlin, 2001.Google Scholar
  10. 10.
    Jevicki, A.: Nonperturbative collective field theory, Nuclear Phys.B 376 (1992), 75–98.Google Scholar
  11. 11.
    Moser, J.: Three integrable hamiltonian systems connected with isospectral deformations, Adv.Math. 16 (1975), 197–220.Google Scholar
  12. 12.
    Nekrasov, N.: In nite-dimensional algebras, many-body systems and gauge theories, In: Advances in the Mathematics Science, Moscow Seminar in Mathematical Physics, Amer. Math.Soc.Tranl. 191, Amer.Math.Soc., Providence 1999, pp.263–299.Google Scholar
  13. 13.
    Pechukas, P.: Distribution of energy eigenvalues in the irregular spectrum.Phys.Rev. Lett. 51 (1983), 943–946.Google Scholar
  14. 14.
    Ruijsenaars, S.and Schneider, H.: A new class of integrable systems and its relation to solitons, Ann.Phys.(NY ) 170 (1986), 370–405.Google Scholar
  15. 15.
    Wojciechowski, S.: An integrable marriage of the Euler equations with the Calogero-Moser system. Phys.Lett.A 111 (3) (1985), 101–103.Google Scholar
  16. 16.
    Yukawa, T.: New approach to the statistical properties of energy levels, Phys.Rev. Lett. 54 (1985), 1883–1886.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Joakim Arnlind
    • 1
  • Jens Hoppe
    • 1
  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations