Dirac Operators on Quantum Flag Manifolds
Article
- 111 Downloads
- 22 Citations
Abstract
A Dirac operator D on quantized irreducible generalized flag manifolds is defined. This yields a Hilbert space realization of the covariant first-order differential calculi constructed by I. Heckenberger and S. Kolb. All differentials df=i[D,f] are bounded operators. In the simplest case of Podleś' quantum sphere one obtains the spectral triple found by L. Dabrowski and A. Sitarz.
noncommutative geometry quantum homogeneous spaces
Preview
Unable to display preview. Download preview PDF.
References
- 1.Baston, R. J. and Eastwood, M. G.: The Penrose Transform, Oxford University Press, 1989.Google Scholar
- 2.Cahen, M., Franc, A. and Gutt, S.: Spectrum of the Dirac operator on complex projective space P2q-1(C), Lett. Math. Phys. 18 (1989), 165–176.CrossRefGoogle Scholar
- 3.Cahen, M. and Gutt, S.: Spin structures on compact simply connected Riemannian symmetric spaces, Simon Stevin 62(3/4) (1988), 209–242.Google Scholar
- 4.Chakraborty, P. S. and Pal, A.: Equivariant spectral Triples on the quantum SU(2) group, K-Theory 28(2) (2003), 107–126.CrossRefGoogle Scholar
- 5.Connes, A.: Noncommutative Geometry, Academic Press, New York, 1994.Google Scholar
- 6.Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for SUq(2), math.QA/0209142.Google Scholar
- 7.Dabrowski, L. and Sitarz, A.: Dirac operator on the standard Podle?' quantum sphere. In: Noncommutative Geometry and Quantum Groups, Banach Center Publications 61 (2003), 49–58.Google Scholar
- 8.Dijkhuizen, M. S. and Stokman, J. V.: Quantized flag manifolds and irreducible ✼-representations, Comm. Math. Phys. 203 (1999), 297–324.CrossRefGoogle Scholar
- 9.Friedrich, T.: Dirac Operators in Riemannian Geometry. Amer. Math. Soc., Providence, 2000.Google Scholar
- 10.Fulton, W. and Harris, J.: Representation Theory, Springer, New York, 1991.Google Scholar
- 11.Goswami, D.: Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples. math-ph/0204010.Google Scholar
- 12.Gover, A. R. and Zhang, R. B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I, Rev. Math. Phys. 11(5) (1999), 533–552.CrossRefGoogle Scholar
- 13.Heckenberger, I. and Kolb, S.: The locally finite part of the dual coalgebra of quantized irreducible flag manifolds, math.QA/0301244, to appear in Proc. London Math. Soc. Google Scholar
- 14.Heckenberger, I. and Kolb, S.: Differential calculus on quantum homogeneous spaces, Lett. Math. Phys. 63(3) (2003), 255–264.CrossRefGoogle Scholar
- 15.Joseph, A.: Quantum Groups and their Primitive Ideals. Springer, New York, 1995.Google Scholar
- 16.Klimyk, A. U. and Schmüdgen, K.: Quantum Groups and their Representations, Springer, New York, 1997.Google Scholar
- 17.Parthasarathy, R.: Dirac operator and the discrete series, Ann. of Math. 96(2) (1972), 1–30.Google Scholar
- 18.Podles, P.: Quantum spheres, Lett. Math. Phys. 14 (1987), 193–202.CrossRefGoogle Scholar
- 19.Schmüdgen, K.: Commutator representations of differential calculi on the quantum group SUq(2). J. Geom. Phys. 31 (1999), 241–264.CrossRefGoogle Scholar
- 20.Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. 122(1) (1989), 125–170.CrossRefGoogle Scholar
Copyright information
© Kluwer Academic Publishers 2004