Advertisement

Letters in Mathematical Physics

, Volume 67, Issue 1, pp 49–59 | Cite as

Dirac Operators on Quantum Flag Manifolds

  • Ulrich Krähmer>
Article

Abstract

A Dirac operator D on quantized irreducible generalized flag manifolds is defined. This yields a Hilbert space realization of the covariant first-order differential calculi constructed by I. Heckenberger and S. Kolb. All differentials df=i[D,f] are bounded operators. In the simplest case of Podleś' quantum sphere one obtains the spectral triple found by L. Dabrowski and A. Sitarz.

noncommutative geometry quantum homogeneous spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baston, R. J. and Eastwood, M. G.: The Penrose Transform, Oxford University Press, 1989.Google Scholar
  2. 2.
    Cahen, M., Franc, A. and Gutt, S.: Spectrum of the Dirac operator on complex projective space P2q-1(C), Lett. Math. Phys. 18 (1989), 165–176.CrossRefGoogle Scholar
  3. 3.
    Cahen, M. and Gutt, S.: Spin structures on compact simply connected Riemannian symmetric spaces, Simon Stevin 62(3/4) (1988), 209–242.Google Scholar
  4. 4.
    Chakraborty, P. S. and Pal, A.: Equivariant spectral Triples on the quantum SU(2) group, K-Theory 28(2) (2003), 107–126.CrossRefGoogle Scholar
  5. 5.
    Connes, A.: Noncommutative Geometry, Academic Press, New York, 1994.Google Scholar
  6. 6.
    Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for SUq(2), math.QA/0209142.Google Scholar
  7. 7.
    Dabrowski, L. and Sitarz, A.: Dirac operator on the standard Podle?' quantum sphere. In: Noncommutative Geometry and Quantum Groups, Banach Center Publications 61 (2003), 49–58.Google Scholar
  8. 8.
    Dijkhuizen, M. S. and Stokman, J. V.: Quantized flag manifolds and irreducible ✼-representations, Comm. Math. Phys. 203 (1999), 297–324.CrossRefGoogle Scholar
  9. 9.
    Friedrich, T.: Dirac Operators in Riemannian Geometry. Amer. Math. Soc., Providence, 2000.Google Scholar
  10. 10.
    Fulton, W. and Harris, J.: Representation Theory, Springer, New York, 1991.Google Scholar
  11. 11.
    Goswami, D.: Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples. math-ph/0204010.Google Scholar
  12. 12.
    Gover, A. R. and Zhang, R. B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I, Rev. Math. Phys. 11(5) (1999), 533–552.CrossRefGoogle Scholar
  13. 13.
    Heckenberger, I. and Kolb, S.: The locally finite part of the dual coalgebra of quantized irreducible flag manifolds, math.QA/0301244, to appear in Proc. London Math. Soc. Google Scholar
  14. 14.
    Heckenberger, I. and Kolb, S.: Differential calculus on quantum homogeneous spaces, Lett. Math. Phys. 63(3) (2003), 255–264.CrossRefGoogle Scholar
  15. 15.
    Joseph, A.: Quantum Groups and their Primitive Ideals. Springer, New York, 1995.Google Scholar
  16. 16.
    Klimyk, A. U. and Schmüdgen, K.: Quantum Groups and their Representations, Springer, New York, 1997.Google Scholar
  17. 17.
    Parthasarathy, R.: Dirac operator and the discrete series, Ann. of Math. 96(2) (1972), 1–30.Google Scholar
  18. 18.
    Podles, P.: Quantum spheres, Lett. Math. Phys. 14 (1987), 193–202.CrossRefGoogle Scholar
  19. 19.
    Schmüdgen, K.: Commutator representations of differential calculi on the quantum group SUq(2). J. Geom. Phys. 31 (1999), 241–264.CrossRefGoogle Scholar
  20. 20.
    Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. 122(1) (1989), 125–170.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ulrich Krähmer>
    • 1
  1. 1.Fakultät für Mathematik und InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations