Advertisement

Letters in Mathematical Physics

, Volume 67, Issue 1, pp 33–48 | Cite as

On the Integration of Poisson Manifolds, Lie Algebroids, and Coisotropic Submanifolds

  • Alberto S. Cattaneo>
Article

Abstract

In recent years, methods for the integration of Poisson manifolds and of Lie algebroids have been proposed, the latter being usually presented as a generalization of the former. In this Letter it is shown that the latter method is actually related to (and may be derived from) a particular case of the former if one regards dual of Lie algebroids as special Poisson manifolds. The core of the proof is the fact, discussed in the second part of this Letter, that coisotropic submanifolds of a (twisted) Poisson manifold are in one-to-one correspondence with possibly singular Lagrangian subgroupoids of source-simply-connected (twisted) symplectic groupoids.

coisotropic submanifold Lagrangian subgroupoid Lie algebroid Poisson manifold symplectic groupoid symplectic reduction twisted Poisson manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bursztyn, H., Crainic, M., Weinstein, A. and Zhu, C.: Integration of twisted Dirac brackets, math.DG/0303180, to appear in Duke Math. J. Google Scholar
  2. 2.
    Cannas da Silva, A. and Weinstein, A.: Geometric Models for Noncommutative Algebras, Berkeley Math. Lecture Notes, Amer. Math. Soc., Providence, 1999.Google Scholar
  3. 3.
    Cattaneo, A. S. and Felder, G.: Poisson sigma models and symplectic groupoids, In: N. P. Landsman, M. Pflaum, and M. Schlichenmeier (eds), Quantization of Singular Symplectic Quotients, Progr. in Math. 198, Birkhäuser, Basel, 2001, pp. 61–93; math.SG/0003023.Google Scholar
  4. 4.
    Cattaneo, A. S. and Felder, G.: Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model, math.QA/0309180.Google Scholar
  5. 5.
    Cattaneo, A. S. and Xu, P.: Integration of twisted Poisson structures, math.SG/0302268, to appear in J. Geom. Phys. Google Scholar
  6. 6.
    Coste, A., Dazord, P. and Weinstein, A.: Groupoïdes symplectiques, Pub. Département de Mathématiques de l'Université de Lyon I 2/A (1987), 1–65.Google Scholar
  7. 7.
    Crainic, M. and Fernandes, R. L.: Integrability of Lie brackets, Ann. Math. 157 (2003) 575–620.Google Scholar
  8. 8.
    Crainic, M. and Fernandes, R. L.: Integrability of Poisson brackets, math.DG/0210152.Google Scholar
  9. 9.
    Karasev, M. V.: Analogues of the objects of Lie group theory for nonlinear Poisson brackets (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 508–538, (English) Math. USSR-Izv. 28 (1987), 497–527; Karasev, M. V. and Maslov, V. P.: Nonlinear Poisson Brackets, Geometry and Quantization, Transl. Math. Monogr. vol 119, Amer. Math. Soc., Providence, 1993.Google Scholar
  10. 10.
    Koszul, J. L.: Crochet de Schouten-Nijenhuis et cohomologie, Élie Cartan et le mathématiques d'adjourd'hui, Astérisque, Numéro Hors Serie, Soc. Math. France, Paris, 1985, pp. 257–271.Google Scholar
  11. 11.
    Mackenzie, K. C. H.: Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Note Ser. 124, Cambridge Univer. Press, 1987.Google Scholar
  12. 12.
    Mackenzie, K.C.H. and Xu, P.: Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415–452.Google Scholar
  13. 13.
    Moerdijk, I. and Mrun, J.: On integrability of infinitesimal actions, Amer. J. Math. 124 (2002), 567–593.Google Scholar
  14. 14.
    Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Relations entre propriétés locales et globales, C.R. Acad. Sci. Paris, Série A 263 (1966), 907–910.Google Scholar
  15. 15.
    Ševera, P.: Some title containing the words 'homotopy' and 'symplectic', e.g. this one, math.SG/0105080.Google Scholar
  16. 16.
    Ševera, P. and Weinstein, A.: Poisson geometry with a 3-form background, Progr. Theor. Phys. Suppl. 144 (2001), 145–154, math.SG/0107133.Google Scholar
  17. 17.
    Weinstein, A.: Lectures on Symplectic Manifolds, Regional Conf. Ser. Math. 29, Amer. Math. Soc., Providence, 1977.Google Scholar
  18. 18.
    Weinstein, A.: Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705–727.Google Scholar
  19. 19.
    Xu, P.: On Poisson groupoids, Internat. J. Math. 6 (1995), 101–124.CrossRefGoogle Scholar
  20. 20.
    Zakrzewski, S.: Quantum and classical pseudogroups. Part I: Union pseudogroups and their quantization, Comm. Math. Phys. 134 (1990), 347–370; Quantum and classical pseudogroups. Part II: Differential and symplectic pseudogroups, Comm. Math. Phys. 134 (1990), 371–395.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Alberto S. Cattaneo>
    • 1
  1. 1.Institut für MathematikUniversität Zürich-IrchelZürichSwitzerland

Personalised recommendations