Deformation Quantization of Poisson Manifolds
- 1.5k Downloads
- 630 Citations
Abstract
I prove that every finite-dimensional Poisson manifold X admits a canonical deformation quantization. Informally, it means that the set of equivalence classes of associative algebras close to the algebra of functions on X is in one-to-one correspondence with the set of equivalence classes of Poisson structures on X modulo diffeomorphisms. In fact, a more general statement is proven (the ‘Formality conjecture’), relating the Lie superalgebra of polyvector fields on X and the Hochschild complex of the algebra of functions on X. Coefficients in explicit formulas for the deformed product can be interpreted as correlators in a topological open string theory, although I do not explicitly use the language of functional integrals.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Alexandrov, M., Kontsevich, M., Schwarz, A. and Zaboronsky, O.: The geometry of the master equation and topological quantum field theory, Internat. J. Modern Phys. A 12(7) (1997), 1405–1429.Google Scholar
- 2.Arnal, D., Manchon, D. and Masmoudi, M.: Choix des signes pour la formalité de M. Kontsevich. Pacific J. Math. 203(2002), 23–66.Google Scholar
- 3.Arnold, V.I., Gusein-Zade, S.M. and Varchenko, A.N.: Singularities of Differentiable Maps, Vol. I: The Classi cation of Critical Points, Caustics and Wave Fronts, Birkhäuser, Boston, 1985.Google Scholar
- 4.Bar-Natan, D., Garoufalidis, S., Rozansky, L. and Thurston, D.: Wheels, wheeling, and the Kontsevich integral of the unknot, Israel J. Math. 119 (2000), 217–237.Google Scholar
- 5.Barannikov, S. and Kontsevich, M.: Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices 1998(4) (1998), 201–215.Google Scholar
- 6.Bayen, F., Flato, M., Frønsdal, C., Lichnerowicz, A. and Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Phys. 111(1) (1978), 61–110.Google Scholar
- 7.Cahen, M., Gutt, S. and De Wilde, M.: Local cohomology of the algebra of C ∞ functions on a connected manifold, Lett. Math. Phys. 4 (1980), 157–167.Google Scholar
- 8.Cattaneo, A. and Felder, G.: On the AKSZ formulation of the Poisson sigma model, Lett. Math. Phys. 56(2) (2001), 163–179.Google Scholar
- 9.Cattaneo, A. and Felder, G.: A path integral approach to the Kontsevich quantization formula, Comm. Math. Phys. 212(3) (2000), 591–611.Google Scholar
- 10.Cattaneo, A., Felder, G. and Tomassini, L.: From local to global deformation quantization of Poisson manifolds, Duke Math. J. 115(2) (2002), 329–352.Google Scholar
- 11.Deligne, P.: Catégories tannakiennes, In: The Grothendieck Festschrift, Vol. II, Progr. in Math. 87, Birkhäuser, Boston, 1990, pp. 111–195.Google Scholar
- 12.De Wilde, M. and Lecomte, P.B.A.: Existence of star-products and of formal deformations in Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487–496.Google Scholar
- 13.Duflo, M.: Caractères des algèbres de Lie résolubles, C.R. Acad. Sci. Sér. A 269 (1969), 437–438.Google Scholar
- 14.Etingof, P. and Kazhdan, D.: Quantization of Lie Bialgebras, I, Selecta Math. (New Ser.) 2(1) (1996), 1–41.Google Scholar
- 15.Fedosov, B.: A simple geometric construction of deformation quantization, J. Differential Geom. 40(2) (1994), 213–238.Google Scholar
- 16.Felder, G. and Shoikhet, B.: Deformation quantization with traces, Lett. Math. Phys. 53(1) (2000), 75–86.Google Scholar
- 17.Fulton, W. and MacPherson, R.: Compactification of configuration spaces, Ann. of Math. (2) 139(1) (1994), 183–225.Google Scholar
- 18.Gelfand, I. M. and Kazhdan D. A.: Some problems of differential geometry and the calculation of cohomologies of Lie algebras of vector fields, Soviet Math. Dokl. 12(5) (1971), 1367–1370.Google Scholar
- 19.Gerstenhaber, M. and Voronov, A.: Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices 1995(3) (1995), 141–153.Google Scholar
- 20.Getzler, E. and Jones, J. D. S.: Operads, homotopy algebra and iterated integrals for double loop spaces, 1994, hep-th/9403055.Google Scholar
- 21.Ginzburg, V.: Method of orbits in the representation theory of complex Lie groups, Funct. Anal. Appl. 15(1) (1981), 18–28.Google Scholar
- 22.Goldman, W. and Millson, J.: The homotopy invariance of the Kuranishi space, Illinois. J. Math. 34(2) (1990), 337–367.Google Scholar
- 23.Hinich, V.: Tamarkin's proof of Kontsevich formality theorem, Forum Math. 15(4) (2003), 591–614.Google Scholar
- 24.Hinich, V. and Schechtman, V.: Deformation theory and Lie algebra homology, I. II., Algebra Colloq. 4(2) (1997), 213–240, and 4(3) (1997), 291–316.Google Scholar
- 25.Hinich, V. and Schechtman, V.: Homotopy Lie algebras, In: I. M. Gelfand Seminar, Adv. Soviet Math. 16(2), Amer. Math. Soc., Providence, RI, 1993, pp. 1–28.Google Scholar
- 26.Hochschild, G., Kostant, B. and Rosenberg, A.: Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102(1962), 383–408.Google Scholar
- 27.Hu, P., Kriz, I. and Voronov, A.: On Kontsevich's Hochschild cohomology conjecture, 2003, math. AT/0309369.Google Scholar
- 28.Kashiwara, M. and Vergne, M.: The Campbell-Hausdor. formula and invariant hyperfunctions, Invent. Math. 47 (1978), 249–272.Google Scholar
- 29.Kirillov, A.: Elements of the Theory of Representations, Springer-Verlag, Berlin, 1976.Google Scholar
- 30.Kontsevich, M.: Feynman diagrams and low-dimensional topology, In: First European Congress of Mathematics (Paris, 1992), Vol. II, Progr. in Math. 120, Birkhäuser, Basel, 1994, pp. 97–121.Google Scholar
- 31.Kontsevich, M.: Formality conjecture, In: D. Sternheimer et al.(eds), Deformation Theory and Symplectic Geometry, Kluwer, Dordrecht, 1997, pp. 139–156.Google Scholar
- 32.Kontsevich, M.: Rozansky–Witten invariants via formal geometry, Compositio Math. 115(1) (1999), 115–127.Google Scholar
- 33.Kontsevich, M.: Homological algebra of mirror symmetry, In: Proceedings of ICM, (Zürich 1994) Vol. I, Birkhäuser, Basel, 1995, pp. 120–139.Google Scholar
- 34.Kontsevich, M.: Deformation quantization of Poisson manifolds, I., 1997, q-alg/9709040.Google Scholar
- 35.Kontsevich, M.: Operads and motives in deformation quantization, Lett. Math. Phys. 48(1) (1999), 35–72.Google Scholar
- 36.Kontsevich, M.: Deformation quantization of algebaric varieties, Lett. Math. Phys. 56(3) (2001), 271–294.Google Scholar
- 37.Kontsevich, M. and Soibelman, Y.: Deformations of algebras over operads and the Deligne conjecture, In: G. Dito and D. Sternheimer(eds), Conférence Moshé Flato 1999, Vol. I (Dijon 1999), Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307.Google Scholar
- 38.McClure, M. and Smith, J.: A solution of Deligne's Hochschild cohomology conjecture, In: Recent Progress in Homotopy Theory (Baltimore, MD, 2000), Contemp. Math. 293, Amer. Math. Soc., Providence, RI, 2002, pp. 153–193Google Scholar
- 39.Manin, Y.I.: Gauge Field Theory and Complex Geometry, Springer-Verlag, Berlin, 1988.Google Scholar
- 40.Markl, M. and Voronov, A.: PROPped up graph cohomology, 2000, math. QA/0307081.Google Scholar
- 41.Quillen, D.: Superconnections and the Chern character, Topology 24(1985), 89–95.Google Scholar
- 42.Schlessinger, M. and Stashe., J.: The Lie algebra structure on tangent cohomology and deformation theory, J. Pure Appl. Algebra 38(1985), 313–322.Google Scholar
- 43.Sullivan, D.: Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977) No. 47, (1978), 269–331.Google Scholar
- 44.Voronov, A.: Quantizing Poisson manifolds, In: Perspectives on Quantization (South Hadley, MA, 1996), Contemp. Math. 214, Amer. Math. Soc., Providence, RI, 1998, pp. 189–195.Google Scholar
- 45.Tamarkin, D.: Another proof of M. Kontsevich formality theorem, 1998, math. QA/9803025.Google Scholar
- 46.Tamarkin, D.: Quantization of Lie bialgebras via the formality of the operad of little disks, in: G. Halbout(ed. ), Deformation Quantization(Strasbourg 2001), IRMA Lectures in Math. Theoret. Phys. Vol. I, Walter de Gruyter, Berlin, 2002, pp. 203–236.Google Scholar
- 47.Tamarkin, D. and Tsygan, B.: Noncommutative differential calculus, homotopy BV algebras and formality conjectures, Methods Funct. Anal. Topology 6(2) (2000), 85–100.Google Scholar