Letters in Mathematical Physics

, Volume 66, Issue 1–2, pp 141–155 | Cite as

Back to the Amitsur–Levitzki Theorem: a Super Version for the Orthosymplectic Lie Superalgebra \({\mathfrak{o}}{\mathfrak{s}}{\mathfrak{p}}\left( {1,2n} \right)\)

  • P-A. Gié
  • G. Pinczon
  • R. Ushirobira


We prove an Amitsur–Levitzki type theorem for the Lie superalgebras \(\mathfrak{o}\mathfrak{s}\mathfrak{p}\left( {1,2n} \right)\)) inspired by Kostant's cohomological interpretation of the classical theorem. We show that the Lie superalgebras \(\mathfrak{g}\mathfrak{l}\left( {p,q} \right)\) cannot satisfy an Amitsur–Levitzki type super identity if pq≠0 and conjecture that neither can any other classical simple Lie superalgebra with the exception of \(\mathfrak{o}\mathfrak{s}\mathfrak{p}\left( {1,2n} \right)\).

Amitsur–Levitzki theorem Lie superalgebras transgression operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amitsur, A. S. and Levitzki, J.: Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449–463.Google Scholar
  2. 2.
    Benanti, F., Demmel, J., Drensky, V. and Koev, P.: Computational approach to polynomial identities of matrices, a survey, In: A. Giambruno (ed.), Polynomial Identities and Combinatorial Methods, Dekker, 2003.Google Scholar
  3. 3.
    Cartan, H.: La transgression dans un groupe de Lie et dans un espace bré principal, Coll. Topologie, CBRM Bruxelles, (1950), 57–71.Google Scholar
  4. 4.
    Chevalley, C.: The Betti numbers of the exceptional Lie groups, Proc. Intern. Congr. Math. II (1950), 21–24.Google Scholar
  5. 5.
    Djokovic, D. Z. and Hochschild, G.: Semi-simplicity of 2-graded Lie algebras, Illinois J. Math. 20 (1976), 134–143.Google Scholar
  6. 6.
    Fuks, D. B. and Leites, D. H.: Cohomology of Lie superalgebras, C.R. Acad. Bulg. Sci. 37 (1984), 1595–1596.Google Scholar
  7. 7.
    Jacobson, N.: PI-Algebras, Lecture Notes in Math. 441, Springer-Verlag, Berlin, 1975.Google Scholar
  8. 8.
    Kantor, I. and Trishin, I.: The algebra of polynomial invariants of the adjoint representation of the Lie superalgebra \({\mathfrak{g}}{\mathfrak{l}}\) (m, n), Comm. Algebra 25 (7) (1997), 2039–2070.Google Scholar
  9. 9.
    Kostant, B.: Clifford analogue of the Hopf–Koszul–Samelson theorem, the ρ-decomposition C(\({\mathfrak{g}}\)) = EndV ρ C(P) and the \({\mathfrak{g}}\)-module structure of ∧ \({\mathfrak{g}}\), Adv. in Math. 125 (1997), 275–350.Google Scholar
  10. 10.
    Kostant, B.: A Lie algebra generalization of the Amitsur–Levitzki theorem, Adv. in Math. 40 (1981), 155–175.Google Scholar
  11. 11.
    Kostant, B.: Lie groups representations on polynomial rings, Amer. J. Math. 23 (1963), 327–404.Google Scholar
  12. 12.
    Kostant, B.: A theorem of Frobenius, a theorem of Amitsur–Levitzki and cohomology theory, J. Math. Mech. 7 (1958), 237–264.Google Scholar
  13. 13.
    Koszul, J. L.: Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65–127.Google Scholar
  14. 14.
    Leites, D. H.: Cohomology of Lie superalgebras, Funct. Anal. Appl. 9 (1975), 75–76.Google Scholar
  15. 15.
    Musson, I.: Enveloping algebras of Lie super algebras, a survey, Contemporary Math. 124 (1992), 141–149.Google Scholar
  16. 16.
    Musson, I.: On the center of the enveloping algebra of a classical simple Lie superalgebras, J. Algebra 193 (1997), 75–101.Google Scholar
  17. 17.
    Pinczon, G.: The enveloping algebra of the Lie superalgebra \({\mathfrak{o}}{\mathfrak{s}}{\mathfrak{p}}\)(1, 2) J. Algebra 132 (1990), 219–242.Google Scholar
  18. 18.
    Razmyslov, Yu. P.: Identities of Algebras and their Representations, translated from the 1989 Russian original, Trans. Math. Monogr. 138, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
  19. 19.
    Rosset, S.: A short proof of the Amitsur–Levitzki theorem, Israel J. Math. 23 (1976), 187–188.Google Scholar
  20. 20.
    Rowen, L. H.: Standard polynomials in matrix algebras, Trans. Amer. Math. 190 (1974), 253–284.Google Scholar
  21. 21.
    Rowen, L. H.: Polynomials Identities in Ring Theory, Academic Press, New York, 1980.Google Scholar
  22. 22.
    Sergeev, A. N.: The invariant polynomials on simple Lie superalgebras, Represent. Theory 3 (1999), 250–280.Google Scholar
  23. 23.
    Swan, R. G.: An application of graph theory to algebra, Proc. Amer. Math. Soc. 14 (1963), 367–373. Correction at ibid. 21 (1969), 397–380.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • P-A. Gié
    • 1
  • G. Pinczon
    • 1
  • R. Ushirobira
    • 1
  1. 1.Institut de Mathématiques de BourgogneUniversité de BourgogneDijon CedexFrance

Personalised recommendations