Letters in Mathematical Physics

, Volume 66, Issue 1–2, pp 65–72 | Cite as

Formality of Chain Operad of Little Discs

  • Dmitry E. Tamarkin


We prove that the chain operad of little disks is formal in characteristic zero, and discuss briefly the relation with Kontsevich formality in deformation quantization.

braid group category formality little disks operad nerve quasi-isomorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Natan, D.: On associators and Grothendieck-Teichmuller group I, q-alg/9606025Google Scholar
  2. 2.
    Fiedorowicz, Z.: The symmetric bar construction, preprint, available at http://www.math. Scholar
  3. 3.
    Drinfeld, V. G.: Quasi-Hopf algebras, Leningrad Math. J. (1990), 1419–1457.Google Scholar
  4. 4.
    Ginot, A. and Halbout, G.: A formality theorem for Poisson manifolds, Lett. Math. Phys. 66 (2003), 37–64 (this issue).Google Scholar
  5. 5.
    Hinich, V.: Tamarkin's proof of Kontsevich's formality theorem, math.QA/0003052Google Scholar
  6. 6.
    Kontsevich, M.: Operads and motives in deformation quantization, Lett. Math. Phys. 48(1) (1999), 35–72.Google Scholar
  7. 7.
    Kontsevich, M. and Soibelman, Y.: Deformation of algebras over operads and Deligne's conjecture, In: Conférence Moshé Flato 1999, Vol. 1, Math. Phys. Stud. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307.Google Scholar
  8. 8.
    McClure, J. and Smith, J.: A solution of Deligne's Hochschild cohomology conjecture, In: Recent Progress in Homotopy Theory (Baltimore, MD, 2000), Contemp. Math. 293, Amer. Math. Soc., Providence, 2002.Google Scholar
  9. 9.
    Tamarkin, D. E.: Another proof of M. Kontsevich formality theorem, math. QA/9803025.Google Scholar
  10. 10.
    Tamarkin, D. E.: Formality of small square operad, math.QA/9809164.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Dmitry E. Tamarkin
    • 1
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonU.S.A.

Personalised recommendations