Machine Learning

, Volume 57, Issue 1–2, pp 13–34 | Cite as

Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving

  • Nada Lavrač
  • Hiroshi Motoda
  • Tom Fawcett
  • Robert Holte
  • Pat Langley
  • Pieter Adriaans
Introduction

Abstract

This introductory paper to the special issue on Data Mining Lessons Learned presents lessons from data mining applications, including experience from science, business, and knowledge management in a collaborative data mining setting.

data mining machine learning scientific discovery lessons learned applications collaborative data mining knowledge management future data mining challenges 

References

  1. Adriaans, P. (2002). Backgrounds and general trends. In J. Meij (Ed.), Dealing with the dataflood, mining data, text and multimedia (pp. 16–25). STT Beweton, The Hague, Netherlands.Google Scholar
  2. Adriaans, P. (2002a). Production control. In W. Klösgen, & J. M. Zytkow (Eds.), Handbook of data mining and knowledge discovery. Oxford University Press.Google Scholar
  3. Adriaans, P., & Zantinge, D. (1996). Data mining. Addison-Wesley.Google Scholar
  4. Armistead, C., & Meakins, M. (2002).Aframework for practising knowledge management. Long Range Planning, 35:1, 49–71.Google Scholar
  5. Berry, M. J. A., & Linoff, G. S. (1997). Data mining techniques: For marketing, sales, and customer support. John Wiley and Sons.Google Scholar
  6. Brodley, C. E., & Smyth, P. (1995). The process of applying machine learning algorithms. In Proceedings of the ICML-95 Workshop on Applying Machine Learning in Practice.Google Scholar
  7. Camarinha-Matos, L. M., Afsarmanesh, H., & Rabelo, R. (Eds.). (2000). E-business and virtual enterprise: Managing business-to-business cooperation. Kluwer.Google Scholar
  8. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. CRISP-DM consortium.Google Scholar
  9. Clark, P., & Matwin, S. (1993). Using qualitative models to guide inductive learning. In Proceedings of the Tenth International Conference on Machine Learning (pp. 49–56).Google Scholar
  10. Danyluk, A., Provost, F., & Carr, B. (2002).Telecommunications network diagnosis. In W. Klösgen, & J. M. Zytkow (Eds.), Handbook of data mining and knowledge discovery. Oxford University Press.Google Scholar
  11. Dieng, R. (2000). Guest editor's introduction: Knowledge management and the Internet. IEEE Intelligent Systems, 15:3, 14–17.Google Scholar
  12. Džeroski, S., & Lavrač, N. (Eds.). (2001). Relational data mining. Springer.Google Scholar
  13. Edvinsson, L., & Malone, M. S. (1997). Intellectual capital. Harper Business.Google Scholar
  14. Evans, B., & Fisher, D. (2002). Using decision tree induction to minimize process delays in the printing industry. InW. Klösgen, & J. M. Zytkow (Eds.), Handbook of data mining and knowledge discovery. Oxford University Press.Google Scholar
  15. Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17, 37–54.Google Scholar
  16. Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996a). From data mining to knowledge discovery: An overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining. AAAI/MIT Press.Google Scholar
  17. Furubotn, E. G., & Richter, R. (1997). Institutions and economic theoy: The contribution of the new institutional economics. The University of Michigan Press.Google Scholar
  18. Garmus, D., & Herron, D. (2001). Function point analysis: measurement practices for successful software projects. Addison-Wesley Longman Publishing Co., Inc.Google Scholar
  19. Goranson, H. T. (1999). The agile virtual enterprise: Cases, metrics, tools. Quorum Books.Google Scholar
  20. Halliman, C. (2001). Business intelligence using smart techniques. Information Uncover.Google Scholar
  21. Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining. MIT Press.Google Scholar
  22. Jorge, A., Moyle, S., Blockeel, H., & Voss, A. (2003). Data mining process and collaboration principles. In D. Mladenić, N. Lavrač, M. Bohanec, & S. Moyle (Eds.), Data mining and decision support: Integration and collaboration (pp. 63–78). Kluwer.Google Scholar
  23. Jorge, A., Bojadžiev, D., Mladenić, D., & #x0160;těpánková, O., Palouš, J., Alves, M. A., Petrak, J., & Flach, P. (2003a). Internet support to collaboration: A knowledge management and organizational memory view. In D. Mladenić, N. Lavrač, M. Bohanec, & S. Moyle (Eds.), Data mining and decision support: Integration and collaboration (pp. 247–259). Kluwer.Google Scholar
  24. Kohavi, R., Mason, L., Parekh, R., & Zheng, Z. (2004). Lessons and challenges from mining retail e-commerce data. Machine Learning, 57:1/2, Kluwer.Google Scholar
  25. Maedche, A. 2002 Ontology learning for the semantic Web. Kluwer Academic publishers.Google Scholar
  26. Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30:2/3, 195–216.Google Scholar
  27. Langley, P. (2000). The computational support of scientific discovery. International Journal of Human-Computer Studies, 53, 393–410.Google Scholar
  28. Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Communications of the ACM, 38:11, 54–64.Google Scholar
  29. Lavrač, N. (2001) Computational logic and machine learning: A roadmap for inductive logic programming. Computational logic, Special issue: Computational logic roadmap (pp. 47–73).Google Scholar
  30. Lavrač, N., Motoda, H., & Fawcett, T. (Eds.). (2002). Proceedings of the First International Workshop on Data Mining Lessons Learned, DMLL-2002, held in conjunction with ICML-2002, Sydney, July 2002. Available at: http://www.hpl.hp.com/personal/Tom Fawcett/DMLL-2002/Proceedings.html.Google Scholar
  31. Lavrač, N. & Urbančič, T. (2003). Mind the gap: Academia-business partnership models and e-collaboration lessons learned. In D. Mladenić, N. Lavrač, M. Bohanec, & S. Moyle (Eds.), Data mining and decision support: Integration and collaboration (pp. 261–269). Kluwer.Google Scholar
  32. Malhotra, Y. (2001). Knowledge management for the new world of business <http://www.kmnetwork.com/> whatis.htm.Google Scholar
  33. Michie, D. (1989). Problems of computer-aided concept formation. In J. R. Quinlan (Ed.), Applications of expert systems, vol. 2 (pp. 310–333). Addison-Wesley.Google Scholar
  34. Mitchell, F., Sleeman, D., Duffy, J. A., Ingram, M. D., & Young, R. W. (1997). Optical basicity of metallurgical slags: A new computer-based system for data visualisation and analysis. Ironmaking and Steelmaking, 24, 306–320.Google Scholar
  35. Mitchell, T. (1997). Does machine learning really work? AI Magazine, 18:3, 11–20.Google Scholar
  36. Mladenić, D., Lavrač, N., Bohanec, M., & Moyle, S. (Eds.). (2003). Data mining and decision support: Integration and collaboration. Kluwer.Google Scholar
  37. Mladenić, D., & Lavrač, N. (Eds.). (2003). Data mining and decision support: A european virtual enterprise. DZS Publishers.Google Scholar
  38. Morik, K., & Scholz, M. (2003). The MiningMart approach to knowledge discovery in databases. In N. Zhong, & J. Liu (Eds.), Handbook of intelligent IT. IOS Press.Google Scholar
  39. Motoda, H. (Ed.). (2002). Active mining: New directions of data mining. IOS Press.Google Scholar
  40. Motoda, H., & Washio, T. (Eds.). (2002). In Proceedings of the First International Workshop on Active Mining, AM2002, held in conjunction with IEEE ICDM-2002, Maebashi.Google Scholar
  41. Moyle, S., McKenzie, J., & Jorge, A. (2003). Collaboration in a data mining virtual organization. In D. Mladenić, N. Lavrač, M. Bohanec, & S. Moyle (Eds.), Data mining and decision support: Integration and collaboration (pp. 49–62). Kluwer.Google Scholar
  42. Pazzani, M. (2000). Knowledge discovery from data? IEEE intelligent systems, March/April, 10–13.Google Scholar
  43. Pazzani, M. J., Mani, S., & Shankle, W. R. (2001). Acceptance of rules generated by machine learning among medical experts. Methods of Information in Medicine, 40, 380–385.Google Scholar
  44. Porter, B. W., Bareiss, R., & Holte, R. C. (1990). Concept learning and heuristic classification in weak theory domains. Artificial Intelligence, 45:1/2, 229–263.Google Scholar
  45. Provost, F. (2003). The role of applications in the science of machine learning. Invited talk at the Twentieth international conference on machine learning.Google Scholar
  46. Provost, F., & Danyluk, A. (1999). Problem definition, data cleaning and evaluation: A classifier learning case study. Informatica, 23, 123–136.Google Scholar
  47. Provost, F., Fawcett, T., & Kohavi, R. (1998). The case against accuracy estimation for comparing induction algorithms. In Proceedings of the Fifteenth International Conference on Machine Learning (pp. 445–453).Google Scholar
  48. Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.Google Scholar
  49. Saito, K., Langley, P., Grenager, T., Potter, C., Torregrosa, A., & Klooster, S. A. (2001). Computational revision of quantitative scientific models. In Proceedings of the Fourth International Conference on Discovery Science, (pp. 336–349).Google Scholar
  50. Saitta, L., & Neri, F. (1998). Learning in the 'real world'. Machine Learning, 30:2/3, 133–164.Google Scholar
  51. Senator, T. (2002). Evidence extraction and link discovery program. Speech at DARPATech 2002. Transcript available: <http://www.darpa.mil/> DARPATech2002/presentations/iao pdf/speeches/SENATOR.pdfGoogle Scholar
  52. Shapiro, A. D. (1987). Structured induction in expert systems. Addison-Wesley.Google Scholar
  53. Turban, E., & Aronson, J. (1998). Decision support systems and intelligent systems, 5th edn. Prentice Hall.Google Scholar
  54. Valdés-Pérez, R. (1994). Human/computer interactive elucidation of reaction mechanisms: Application to catalyzed hydrogenolysis of ethane. Catalysis Letters, 28, 79–87.Google Scholar
  55. Wettschereck, D., Jorge, A., & Moyle, S. (2003). Data mining and decision support integration through the predictive model markup language standard and visualization. In D. Mladenić, N. Lavrač, M. Bohanec, & S. Moyle (Eds.), Data mining and decision support: Integration and collaboration (pp. 119–130). Kluwer.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Nada Lavrač
    • 1
    • 2
  • Hiroshi Motoda
    • 3
  • Tom Fawcett
    • 4
  • Robert Holte
    • 5
  • Pat Langley
    • 6
  • Pieter Adriaans
    • 7
  1. 1.Institute Jožef StefanLjubljanaSlovenia
  2. 2.Nova Gorica PolytechnicNova GoricaSlovenia
  3. 3.Osaka UniversityOsakaJapan
  4. 4.Hewlett-Packard LabsPalo AltoUSA
  5. 5.Computing Science DepartmentUniversity of AlbertaEdmontonCanada
  6. 6.Computational Learning Laboratory, Center for the Study of Language & InformationStanford UniversityStanfordUSA
  7. 7.Institute for Language Logic and ComputationAmsterdamThe Netherlands

Personalised recommendations