Journal of Philosophical Logic

, Volume 33, Issue 5, pp 497–548 | Cite as

Algebras of Intervals and a Logic of Conditional Assertions

  • Peter Milne
Article

Abstract

Intervals in boolean algebras enter into the study of conditional assertions (or events) in two ways: directly, either from intuitive arguments or from Goodman, Nguyen and Walker's representation theorem, as suitable mathematical entities to bear conditional probabilities, or indirectly, via a representation theorem for the family of algebras associated with de Finetti's three-valued logic of conditional assertions/events. Further representation theorems forge a connection with rough sets. The representation theorems and an equivalent of the boolean prime ideal theorem yield an algebraic completeness theorem for the three-valued logic. This in turn leads to a Henkin-style completeness theorem. Adequacy with respect to a family of Kripke models for de Finetti's logic, Łukasiewicz's three-valued logic and Priest's Logic of Paradox is demonstrated. The extension to first-order yields a short proof of adequacy for Körner's logic of inexact predicates.

algebras of intervals boolean prime ideal theorem conditional assertion conditional event de Finetti's logic of conditional events Gödel's three-valued logic Kalman implication Körner's logic of inexact predicates Kripke semantics Łukasiewicz algebras of order three Łukasiewicz's three-valued logic Priest's logic of paradox rough sets Routley–Meyer semantics for negation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Balbes, R. and Dwinger, P.: Distributive Lattices, University of Missouri Press, Columbia, MO, 1974.Google Scholar
  2. 2.
    Batens, D.: Against global paraconsistency, Studies in Soviet Thought 39(1990), 209-229.Google Scholar
  3. 3.
    Belnap, N.: Restricted quantification and conditional assertion, in H. Leblanc (ed.), Truth, Syntax and Modality, North-Holland, Amsterdam, 1973, pp. 48-75.Google Scholar
  4. 4.
    Blamey, S.: Partial logic, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. III, Reidel, Dordrecht, 1986, pp. 1-70.Google Scholar
  5. 5.
    Busch, D.: An expressive three-valued logic with two negations, in J. Komorowski and Z. W. Ra´s (eds.),Methodologies for Intelligent Systems: 7th International Symposium ISMIS '93, Trondheim, Norway, June 1993, Proceedings, Lecture Notes in Artificial Intelligence 689, Springer, Berlin, 1993, pp. 29-38.Google Scholar
  6. 6.
    Busch, D.: Sequent formalizations of three-valued logics, in P. Doherty (ed.), Partiality, Modality and Nonmonotonicity, CSLI, Stanford, 1996, pp. 45-75.Google Scholar
  7. 7.
    Calabrese, P. G.: An algebraic synthesis of the foundations of logic and probability, Information Sciences 42(1987), 187-237.Google Scholar
  8. 8.
    Cleave, J. P.: The notion of logical consequence in the logic of inexact predicates, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 29(1974), 307-324.Google Scholar
  9. 9.
    Cleave, J. P.: A Study of Logics, Oxford University Press, 1991.Google Scholar
  10. 10.
    Comer, S.: An algebraic approach to the approximation of information, Fundamenta Informaticae 14(1991), 492-502.Google Scholar
  11. 11.
    de Finetti, B.: La logique de la probabilité, Actes du congrès international de philosophie scientifique, Fasc. IV, Hermann, Paris, 1936, pp. 31-39; English translation by R. B. Angell, The logic of probability, Philosophical Studies 77(1995), 181-190.Google Scholar
  12. 12.
    de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives, Annales de l'Institut Henri Poincaré 7, 1-68, translated by H. E. Kyburg as 'Foresight: Its logical laws, its subjective sources', in H. Kyburg and H. Smokler (eds.), Studies in Subjective Probability, 2nd edn, Krieger, Huntington, NY, 1980, pp. 53-118.Google Scholar
  13. 13.
    Düntsch, I.: A logic for rough sets, Theoretical Computer Science 179(1997), 427-436.Google Scholar
  14. 14.
    Düntsch, I.: Rough sets and algebras of relations, in E. Orłowska (ed.), Incomplete Information: Rough Set Analysis, Physica Verlag, Heidelberg, 1998, pp. 95-108.Google Scholar
  15. 15.
    Fitting, M.: Kleene's logic, generalized, Journal of Logic and Computation 1(1991), 797-810.Google Scholar
  16. 16.
    Gabbay, D.: Semantical Investigations in Heyting's Intuitionistic Logic,Reidel, Dordrecht, 1981.Google Scholar
  17. 17.
    Gödel, K.: Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften in Wien 69(1932), 65-66, reprinted with English translation in Kurt Gödel, Collected Works, Vol. I (S. Feferman, J. W. Dawson, Jr., et al., eds.), Oxford University Press, Oxford, 1986, pp. 222-225.Google Scholar
  18. 18.
    Goodman, I. R.: Toward a comprehensive theory of linguistic and probabilistic evidence: Two new approaches to conditional event algebra, IEEE Transactions on Systems, Man and Cybernetics 24(1994), 1685-1698.Google Scholar
  19. 19.
    Goodman, I. R. and Nguyen, H. T.: Conditional objects and the modelling of uncertainties, in M. M. Gupta and T. Yamakawa (eds.), Fuzzy Computing: Theory, Hardware, and Applications, North-Holland, Amsterdam, 1988, pp. 119-138.Google Scholar
  20. 20.
    Goodman, I. R., Nguyen, H. T. and Walker, E. A.: Conditional Inference and Logic for Intelligent Systems: A Theory of Measure-Free Conditioning, North-Holland, Amsterdam, 1991.Google Scholar
  21. 21.
    Görnemann, S.: A logic stronger than intuitionism, Journal of Symbolic Logic 36(1971), 249-261.Google Scholar
  22. 22.
    Hailperin, T.: Sentential Probability Logic: Origins, Development, Current Status, and Technical Applications, Lehigh University Press, Bethlehem, PA, 1996.Google Scholar
  23. 23.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1930, 42-56; English translation in P. Mancosu (ed.), From Brouwer to Hilbert: The Debate in the Foundations of Mathematics in the 1920s, Oxford University Press, New York and London, 1998, pp. 311-327.Google Scholar
  24. 24.
    IEEE Transactions on Systems, Man and Cybernetics(Special Issue on Conditional Event Algebra) 24(12) (1994), 1665-1766.Google Scholar
  25. 25.
    Iwi´nski, T. B.: Algebraic approach to rough sets, Bulletin of the Polish Academy of Sciences: Mathematics 35(1987), 673-683.Google Scholar
  26. 26.
    Katri¡nák, T.: Construction of regular double p-algebras, Bulletin de la Société Royale des Sciences de Liège 43(1974), 294-301.Google Scholar
  27. 27.
    Koopman, B. O.: The axioms and algebra of intuitive probability, Annals of Mathematics 41(1940), 269-292.Google Scholar
  28. 28.
    Koopman, B. O.: The bases of probability, Bulletin of the American Mathematical Society 46(1940), 763-774; reprinted in H. Kyburg and H. Smokler (eds.), Studies in Subjective Probability, 2nd edn, Krieger, Huntington, NY, 1980, pp. 117-131.Google Scholar
  29. 29.
    Körner, S.: Experience and Theory, Kegan Paul, London, 1966.Google Scholar
  30. 30.
    Lewis, D. K.: Probabilities of conditionals and conditional probabilities, Philo-sophical Review LXXXV(1976), 297-315; reprinted with postscript in Lewis, Philosophical Papers, Vol. 2, Oxford University Press, Oxford, 1986, pp. 133-156.Google Scholar
  31. 31.
    Lewis, D. K.: Probability of conditionals and conditional probabilities II, Philosophical Review VC(1986), 581-589.Google Scholar
  32. 32.
    Makinson, D.: Topics in Modern Logic, Methuen, London, 1973.Google Scholar
  33. 33.
    Mazurkiewicz, S.: Podstawy Rachunka Prawdopodobienstwa, Pa´nstowe Wydawnictwo Naukawe, Warsaw, 1956.Google Scholar
  34. 34.
    Milne, P.: Bruno de Finetti and the logic of conditional events, British Journal for the Philosophy of Science 48(1997), 195-232.Google Scholar
  35. 35.
    Moisil, G. C.: Recherches sur les logiques non-chrysipiennes, Annales scientifique de l'université de Jassy 26(1940), 431-466; reprinted with additions and suppressions in [38].Google Scholar
  36. 36.
    Moisil, G. C.: Notes sur les logiques non-chrysipiennes, Annales scientifique de l'université de Jassy 27(1941), 86-98; reprinted with additions and suppressions in [38].Google Scholar
  37. 37.
    Moisil, G. C.: Logique modale, Disquisitiones mathematicae et physicae(Bucharest) II(1942), 3-98; reprinted with additions and suppressions in [38].Google Scholar
  38. 38.
    Moisil, G. C.: Essais sur les logiques non chrysippiennes, Editions de l'Académie de la République Socialiste de Roumanie, Bucharest, 1972.Google Scholar
  39. 39.
    Monteiro, A.: Sur les algèbres de Heyting symétriques, Portugaliae Mathematica 39(1980), 1-237.Google Scholar
  40. 40.
    Monteiro, L.: Les algèbres de Heyting et de £ukasiewicz trivalentes, Notre Dame Journal of Formal Logic XI(1970), 453-466.Google Scholar
  41. 41.
    Nguyen, H. T.: Intervals and boolean rings: Approximation and logic, Foundations of Computing and Decision Sciences 17(1992), 131-138.Google Scholar
  42. 42.
    Pagliani, P.: Rough set systems and logic-algebraic structures, in E. Orłowska (ed.), Incomplete Information: Rough Set Analysis, Physica Verlag, Heidelberg, 1998, pp. 227-236.Google Scholar
  43. 43.
    Pomykała, J. and Pomykała, J. A.: The Stone algebra of rough sets, Bulletin of the Polish Academy of Sciences: Mathematics 36(1988), 495-508.Google Scholar
  44. 44.
    Priest, G.: The logic of paradox, Journal of Philosophical Logic 8(1979), 219-241.Google Scholar
  45. 45.
    Priest, G.: To be and not to be: Dialectical tense logic, Studia Logica XLI(1982), 415-435.Google Scholar
  46. 46.
    Priest, G.: Gaps and gluts: A reply to Parsons, Canadian Journal of Philosophy 25(1995), 57-66.Google Scholar
  47. 47.
    Pynko, A. P.: On Priest's logic of paradox, Journal of Applied Non-Classical Logics 5(1995), 219-225.Google Scholar
  48. 48.
    Schächter, J.: Prolegomena zu einer kritischen Grammatik, Springer, Vienna, 1935; translated as Prolegomena to a Critical Grammar, Reidel, Dordrecht, 1973. Page reference to the English translation.Google Scholar
  49. 49.
    Schay, G.: An algebra of conditional events, Journal of Mathematical Analysis and Applications 24(1968), 334-344.Google Scholar
  50. 50.
    State, L.: Quelques propriétés des algèbres de Morgan, in O. Bîsc¢a, V. Boicescu et al. (eds.), Logique, automatique, informatique, Editions de l'Académie de la République Socialiste de Roumanie, Bucharest, 1971, pp. 195-207.Google Scholar
  51. 51.
    van Dalen, D.: Intuitionist logic, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. III, Reidel, Dordrecht, 1986, pp. 225-340.Google Scholar
  52. 52.
    van Fraassen, B. C.: Gentlemen's wagers: Relevance logic and probability, Philosophical Studies 43(1983), 47-61.Google Scholar
  53. 53.
    Weber, S.: Conditioning on MV-algebras and additive measures-I, Fuzzy Sets and Systems 92(1997), 241-250.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Peter Milne
    • 1
  1. 1.School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUnited Kingdom

Personalised recommendations