Journal of Philosophical Logic

, Volume 33, Issue 3, pp 237–260 | Cite as

A Modal Sortal Logic

  • Max A. Freund

Abstract

An intensional semantic system for languages containing, in their logical syntax, sortal quantifiers, sortal identities, (second-order) quantifiers over sortals and the necessity operator is constructed. This semantics provides non-standard assignments to predicate expressions, which diverge in kind from the entities assigned to sortal terms by the same semantic system. The nature of the entities assigned to predicate expressions shows, at the same time, that there is an internal semantic connection between those expressions and sortal terms. A formal logical system is formulated that is proved to be absolutely consistent, sound and complete with respect to the intensional semantic system.

conceptualism count nouns modal logic non-standard semantics for predicates sortals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Church, A. (1958) Introduction to Mathematical Logic, Princeton University Press, Princeton, NJ.Google Scholar
  2. Cocchiarella, N. B. (1977) Sortals, natural kinds and re-identification, Logique et Analyse 80, 439-474.Google Scholar
  3. Cocchiarella, N. B. (1984) Philosophical perspectives on quantification in tense and modal logic, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. II, D. Reidel Publishing Co., Dordrecht, pp. 309-355.Google Scholar
  4. Cocchiarella, N. B. (1986) Logical Investigations of Predication Theory and the Problems of Universals, Bibliopolis Press, Naples.Google Scholar
  5. Cocchiarella, N. B. (1998) Reference in conceptual realism, Synthese 114, 169-202.Google Scholar
  6. Deutsch, H. (2002) Relative identity, Stanford Enclyclopedia of Philosophy.Google Scholar
  7. Freund, M. (2000) A complete and consistent formal system for sortals, Studia Logica 65(3), 367-381.Google Scholar
  8. Freund, M. (2001) A temporal logic for sortals, Studia Logica 69(3), 351-380.Google Scholar
  9. Gallois, A. (1998) Occasions of Identity: A Study in the Metaphysics of Persistence, Change and Sameness, Clarendon Press, Oxford.Google Scholar
  10. Geach, P. (1980) Reference and Generality, Cornell Univ. Press, Ithaca.Google Scholar
  11. Gupta, A. (1980) Logic of Common Nouns, Yale Univ. Press, New Haven and London.Google Scholar
  12. Lovibond, S. and Williams, S. G. (1996) Identity, Truth and Value: Essays fro David Wiggins, Aristotelian Society Series, Vol. 16, Blackwell, Oxford.Google Scholar
  13. McGinn, C. (2000) Logical Properties, Blackwell, Oxford.Google Scholar
  14. Noonan, H. (1999) Relative identity, in B. Hale and C. Wright (eds.), A Companion to the Philosophy of Language, Blackwell, Oxford.Google Scholar
  15. Stevenson, L. (1972) Relative identity and leibniz' law, Philos. Quaterly 22, 155-158.Google Scholar
  16. Vlach, F. (1983) Review of the logic of common nouns, J. Symbolic Logic 58(2), 500-501.Google Scholar
  17. Wiggins, D. (2001) Sameness and Substance Renewed, Harvard Univ. Press, Cambridge, MA.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Max A. Freund
    • 1
  1. 1.Departamento de FilosofíaUniversidad Nacional ApdoHerediaCosta Rica

Personalised recommendations