Journal of Philosophical Logic

, Volume 33, Issue 1, pp 1–26 | Cite as

Frege, Boolos, and Logical Objects

  • David J. Anderson
  • Edward N. Zalta
Article

Abstract

In this paper, the authors discuss Frege's theory of “logical objects” (extensions, numbers, truth-values) and the recent attempts to rehabilitate it. We show that the ‘eta’ relation George Boolos deployed on Frege's behalf is similar, if not identical, to the encoding mode of predication that underlies the theory of abstract objects. Whereas Boolos accepted unrestricted Comprehension for Properties and used the ‘eta’ relation to assert the existence of logical objects under certain highly restricted conditions, the theory of abstract objects uses unrestricted Comprehension for Logical Objects and banishes encoding (eta) formulas from Comprehension for Properties. The relative mathematical and philosophical strengths of the two theories are discussed. Along the way, new results in the theory of abstract objects are described, involving: (a) the theory of extensions, (b) the theory of directions and shapes, and (c) the theory of truth values.

abstract objects extensions George Boolos Gottlob Frege Hume's Principle logical objects numbers object theory second-order logic truth values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, J., 1994: Fregean extensions of first-order theories, Math. Logic Quarterly 40, 27-30; reprinted in Demopoulos, 1995, pp. 432–437.Google Scholar
  2. Boolos, G., 1986: Saving Frege from contradiction, Proc. Aristotelian Society 87, 137-151; reprinted in Boolos, 1998, pp. 171–182.Google Scholar
  3. Boolos, G., 1987: The consistency of Frege's Foundations of Arithmetic, in J. Thomson (ed.), On Being and Saying, MIT Press, Cambridge, MA; reprinted in Boolos, 1998, pp. 183–201.Google Scholar
  4. Boolos, G., 1989: Iteration again, Philosophical Topics 42, 5-21; reprinted in Boolos, 1998, pp. 88–104.Google Scholar
  5. Boolos, G., 1993: Whence the contradiction?, The Aristotelian Society Supplement LXVII, 213-234; reprinted in Boolos, 1998, pp. 220–236.Google Scholar
  6. Boolos, G., 1998: Logic, Logic, and Logic, J. Burgess and R. Jeffrey (eds.), Harvard University Press, Cambridge, MA.Google Scholar
  7. Burgess, J., 1998: On a consistent subsystem of Frege's Grundgesetze, Notre Dame J. Formal Logic 39, 274-278.Google Scholar
  8. Demopoulos, W. (ed.), 1995: Frege's Philosophy of Mathematics, Harvard University Press, Cambridge.Google Scholar
  9. Ferreira, F. and Wehmeier, K., 2002: On the consistency of the Δ11-CA fragment of Frege's Grundgesetze, J. Philos. Logic 31(4), 301-312.Google Scholar
  10. Frege, G., 1884: Die Grundlagen der Arithmetik, translated by J. L. Austin, Blackwell, Oxford. 1974 (second revised edition).Google Scholar
  11. Frege, G., 1893/1903: Grundgesetze der Arithmetik, Band I/II, Verlag Hermann Pohle, Jena; reprinted in Georg Olms Verlagsbuchhandlung, Hildesheim, 1962.Google Scholar
  12. Goldfarb, W., 2001: First-order Frege theory is undecidable, J. Philos. Logic 30, 613-616.Google Scholar
  13. Hale, B., 1987: Abstract Objects, Blackwell, Oxford.Google Scholar
  14. Heck, R., 1993: The development of arithmetic in Frege's Grundgesetze Der Arithmetik, J. Symbolic Logic 58(2) (June), 579-601.Google Scholar
  15. Heck, R., 1996: The consistency of predicative fragments of Frege's Grundgesetze der Arithmetik, History and Philosophy of Logic 17, 209-220.Google Scholar
  16. Mally, E., 1912: Gegenstandstheoretische Grundlagen der Logik und Logistik, Barth, Leipzig.Google Scholar
  17. Parsons, C., 1965: Frege's theory of number, in M. Black (ed.), Philosophy in America, Cornell, Ithaca; reprinted with Postscript in Demopoulos, 1995, pp. 182–210.Google Scholar
  18. Parsons, T., 1987: The consistency of the first-order portion of Frege's logical system, Notre Dame J. Formal Logic 28(1), 161-68.Google Scholar
  19. Schroeder-Heister, P., 1987: A model-theoretic reconstruction of Frege's permutation argument, Notre Dame J. Formal Logic 28(1), 69-79.Google Scholar
  20. Shapiro, S., 1991: Foundations Without Foundationalism, Clarendon, Oxford.Google Scholar
  21. Shapiro, S. and Weir, A., 1999: New V, ZF, and abstraction, Philosophia Mathematica 7, 293-321.Google Scholar
  22. Wehmeier, K., 1999: Consistent fragments of Grundgesetze and the existence of nonlogical objects, Synthese 121, 309-328.Google Scholar
  23. Wright, C., 1983: Frege's Conception of Numbers as Objects, Aberdeen University Press, Aberdeen, Scotland.Google Scholar
  24. Zalta, E., 1983: Abstract Objects: An Introduction to Axiomatic Metaphysics, D. Reidel, Dordrecht.Google Scholar
  25. Zalta, E., 1988: Intensional Logic and the Metaphysics of Intentionality, MIT/Bradford, Cambridge, MA.Google Scholar
  26. Zalta, E., 1993: Twenty-five basic theorems in situation and world theory, J. Philos. Logic 22, 385-428.Google Scholar
  27. Zalta, E., 1999: Natural numbers and natural cardinals as abstract objects: A partial reconstruction of Frege's Grundgesetze in object theory, J. Philos. Logic 28(6) (1999), 619-660.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • David J. Anderson
    • 1
  • Edward N. Zalta
    • 1
  1. 1.Stanford UniversityUSA

Personalised recommendations