Landscape Ecology

, Volume 19, Issue 4, pp 357–374 | Cite as

Assessing alternative futures for agriculture in Iowa, U.S.A.

  • M.V. Santelmann
  • D. White
  • K. Freemark
  • J.I. Nassauer
  • J.M. Eilers
  • K.B. Vaché
  • B.J. Danielson
  • R.C. Corry
  • M.E. Clark
  • S. Polasky
  • R.M. Cruse
  • J. Sifneos
  • H. Rustigian
  • C. Coiner
  • J. Wu
  • D. Debinski
Article

Abstract

The contributions of current agricultural practices to environmental degradation and the social problems facing agricultural regions are well known. However, landscape-scale alternatives to current trends have not been fully explored nor their potential impacts quantified. To address this research need, our interdisciplinary team designed three alternative future scenarios for two watersheds in Iowa, USA, and used spatially-explicit models to evaluate the potential consequences of changes in farmland management. This paper summarizes and integrates the results of this interdisciplinary research project into an assessment of the designed alternatives intended to improve our understanding of landscape ecology in agricultural ecosystems and to inform agricultural policy. Scenario futures were digitized into a Geographic Information System (GIS), visualized with maps and simulated images, and evaluated for multiple endpoints to assess impacts of land use change on water quality, social and economic goals, and native flora and fauna. The Biodiversity scenario, targeting restoration of indigenous biodiversity, ranked higher than the current landscape for all endpoints (biodiversity, water quality, farmer preference, and profitability). The Biodiversity scenario ranked higher than the Production scenario (which focused on profitable agricultural production) in all endpoints but profitability, for which the two scenarios scored similarly, and also ranked higher than the Water Quality scenario in all endpoints except water quality. The Water Quality scenario, which targeted improvement in water quality, ranked highest of all landscapes in potential water quality and higher than the current landscape and the Production scenario in all but profitability. Our results indicate that innovative agricultural practices targeting environmental improvements may be acceptable to farmers and could substantially reduce the environmental impacts of agriculture in this region.

Agriculture Biodiversity Socio-economics Scenarios Water quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahern J. 1999. Spatial Concepts, Planning Strategies and Future Scenarios: A Framework Method for Integrating Landscape Ecology and Landscape Planning. In: Klopatek J.M. and Gardner R.H. (eds), Landscape Ecological Analysis: Issues and Applications. Springer-Verlag, New York, New York, USA, pp. 175–201.Google Scholar
  2. Alexander R.B., Smith R. and Schwartz G. 1996. The Regional Transport of Point and Nonpoint-Source Nitrogen to the Gulf of Mexico. Proceedings of the Gulf of Mexico Hypoxia Management Conference, December 5–6, 1995, Kenner, Louisiana, U.S. Geological Survey, Reston, Virginia, March 5, 1996.Google Scholar
  3. Arcury T.A. 1990. Environmental Attitude and Environmental Knowledge. Human Organization. 49(4): 300–304.Google Scholar
  4. Arnold J.G., Williams J. and Maidment D.R. 1997. Continuous time water and sediment routing model for large basins. Journal of Hydrologic Engineering 121: 171–183.Google Scholar
  5. Baker J.P., Hulse D.W., Gregory S.V., White D., Van Sickle J., Berger P.A., Dole D. and Schumaker N.H. 2004. Alternative futures for the Willamette River Basin, Oregon. Ecological Applications. In press.Google Scholar
  6. Becher K.D., Schnoebelen D.J. and Ackers K.B. 2000. Nutrients discharged to the Mississippi River from eastern Iowa watersheds. Journal of the American Water Resources Association 36: 161–173.Google Scholar
  7. Bender D. J., Contreras T.A. and Fahrig L. 1998. Habitat loss and population decline: a meta-analysis of the patch-size effect. Ecology 79: 517–533.Google Scholar
  8. Blake J.G. and Karr J.R. 1987. Breeding birds of isolated woodlots: area and habitat relationships. Ecology 68: 1724–1734.Google Scholar
  9. Coiner C., Wu J. and Polasky S. 2001. Economic and environmental implications of alternative landscape designs in the Walnut Creek watershed of Iowa. Ecological Economics 38: 119–139.Google Scholar
  10. Collinge S.K. 1996. Ecological consequences of habitat fragmentation: implications for landscape architecture and planning. Landscape and Urban Planning 36: 59–77.CrossRefGoogle Scholar
  11. Dunning J.B., Stewart D.J., Danielson B.J., Noon B.R., Root T.L., Lamberson R.H. and Stevens E.F. 1995. Spatially-explicit population models: current forms and future uses. Ecological Applications 5: 3–11.Google Scholar
  12. Dupré C. and Ehrlen J. 2002. Habitat configuration, species traits and plant distributions. Journal of Ecology 90: 796–805.Google Scholar
  13. Eilers L.J. and Roosa D.M. 1994. The Vascular Plants of Iowa. University of Iowa Press, Iowa City, Iowa, USA.Google Scholar
  14. Farrar D. 1981. Perspectives on Iowa’s declining flora and fauna-A symposium. Proceedings of the Iowa Academy of Science 88: 1–6.Google Scholar
  15. Freemark K. 1995. Assessing effects of agriculture on terrestrial wildlife: developing a hierarchical approach for the U.S. EPA. Landscape and Urban Planning 31: 99–115.Google Scholar
  16. Freemark K. and Smith J. 1995. A landscape retrospective for Walnut Creek, Story County. Technical report to the U.S. EPA. Unpublished contract report.Google Scholar
  17. Hatfield J.L., Jaynes D.B., Burkart M.R., Cambardella C.A., Mooreman T.B., Prueger J.H., Smith M.A. 1999. Water Quality in Walnut Creek Watershed: Setting and Farming Practices. Journal of Environmental Quality 28: 11–24.Google Scholar
  18. Klopatek J.M., Olson R.J., Emerson C.J. and Joness J.L. 1979. Land-use conflicts with natural vegetation in the United States. Environmental Conservation 6: 191–199.Google Scholar
  19. Krebs J.R., Wilson J.D., Bradbury R.B. and Siriwardena G.M. 1999. A second Silent Spring? Nature 400: 611–612.Google Scholar
  20. Lamy F., Bolte J., Santelmann M. and Smith C. 2002. Development and evaluation of multiple-objective decision-making methods for watershed management planning. Journal of the American Water Resources Association 38: 517–529.Google Scholar
  21. Levins R. 1966. The strategy of model building in population biology. American Scientist 54: 421–431.Google Scholar
  22. Likens G.E., Bormann F.H., Pierce R.S., Eaton J.S. and Johnson N.M. 1977. Biogeochemistry of a forested ecosystem. Springer-Verlag, New York, New York, USA.Google Scholar
  23. Matson P.A., Parton W.J., Power A.G. and Swift M.J. 1997. Agricultural intensification and ecosystem properties. Science 277: 504–508.CrossRefGoogle Scholar
  24. Mitsch W.J., Day J.W. Jr., Gilliam J.W., Groffman P.M., Hey D.L., Randall G.W. and Wang N. 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem. Bioscience 51: 373–388.Google Scholar
  25. index.html. Accessed 06/25/2003.Google Scholar
  26. Nassauer J.I., Corry R.C. and Cruse R. 2002. The landscape in 2025:Alternative landscape future scenarios as a means to consider agricultural policy. Journal of Soil and Water Conservation 57(2): 44A–53A.Google Scholar
  27. Nassauer J. I. and Corry R.C. 2004. Using normative scenarios in landscape ecology. Landscape Ecology 19: this issue.Google Scholar
  28. Peterson G., Cumming A., Carpenter S. 2003. Scenario planning: a tool for conservation in an uncertain world. Conservation Biology 17(2): 358–366.Google Scholar
  29. Pressey R.L., Humphries C.J., Margules C.R., Vane-Right R.I. and Williams P.H. 1993. Beyond opportunism: key principles for systematic reserve selection. Trends in Ecology and Evolution 8: 124–128.CrossRefGoogle Scholar
  30. Prior J. 1991. Landforms of Iowa. University of Iowa Press, Iowa City, Iowa, USA.Google Scholar
  31. Puckett L.J. 1994. Nonpoint and point sources of nitrogen in major watersheds of the United States. U.S. Geological Survey, Water Resources Investigations Report 94-4001, USGS Washington DC, USA.Google Scholar
  32. Rabb G.B. and Sullivan T.B. 1995. Coordinating conservation: global networking for species survival. Conservation and Biodiversity 4: 536–543.Google Scholar
  33. Robinson C.A., Cruse R.M. and Ghaffarzadeh M. 1996. Cropping system and nitrogen effects on mollison organic carbon. Soil Science Society of America Journal 60: 264–269.Google Scholar
  34. Rosenzweig M.L. 1997. Heeding the warning in biodiversity’s basic law. Science 284: 276–277.Google Scholar
  35. Rustigian H. 1999. Assessing the potential impacts of alternative landscape designs on amphibian population dynamics. Master of Science Research Paper, Department of Geosciences, Geography Program, Oregon State University, Corvallis, Oregon, USA.Google Scholar
  36. Rustigian H., Santelmann M. and Schumaker N. 2003. Assessing the potential impacts of alternative landscape designs on amphibian population dynamics. Landscape Ecology 18: 65–81.Google Scholar
  37. Sala O.E., Stuart Chapin III F., Armesto J.J., Berlow E., Bloom-field J., Dirzo R., Huber-Sanwald E., Huenneke L., Jackson R.B., Kinzig A., Leemans R., Dodge D.M., Mooney H.A., Oesterheld M., Poff N.L., Sykes M.T., Walker B.H., Walker M. and Wall D.H. 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.CrossRefPubMedGoogle Scholar
  38. Santelmann M., Freemark K., White D., Nassauer J., Clark M., Danielson B., Eilers J., Cruse R., Galatowitsch S., Polasky S., Vaché K., Wu J. 2001. Applying Ecological Principles to Land-Use Decision Making in Agricultural Watersheds. In: Dale V. and Haeuber R. (eds), Applying Ecological Principles to Land Management. Springer-Verlag, New York, New York, USA.Google Scholar
  39. Schilling K.E. and Thompson C.A. 2000. Walnut Creek monitoring project, Iowa: Monitoring water quality in response to prairie restoration. Journal of the American Water Resources Association 36: 1101–1114.Google Scholar
  40. Schoup M. 1999. Agricultural Runoff of Nutrients and Indicator Organisms in Buck Creek, Iowa. Masters of Science Thesis, Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa, USA.Google Scholar
  41. Starfield A. 1997. A pragmatic approach to modeling for wildlife management. Journal of Wildlife Management 61: 261–270.Google Scholar
  42. Steinitz C., Arias H., Bassett S., Flaxman M., Goode T., Maddock III T., Mouat D., Peiser R. and Shearer A.. 2003. Alternative futures for changing landscapes: The Upper San Pedro River Basin in Arizona and Sonora. Island Press, Washington DC, USA.Google Scholar
  43. Tress B. and Tress G.. 2003. Scenario visualization for participatory landscape planning-a study from Denmark. Landscape and Urban Planning 64: 161–178.Google Scholar
  44. US Census Bureau. 2001. Statistical Abstract of the United States: 2001. U.S. Department of Commerce, Washington, DC, USA.Google Scholar
  45. US GAO. 1999. Report on Animal Agriculture:Waste Management Practices. U.S. General Accounting Office Report GAO/RCED-99-205.Google Scholar
  46. US OTA. 1995. Targeting environmental priorities in agriculture: Reforming program strategies. Congress of the United States, Office of Technology Assessment. OTA-ENV-640. Government Printing Office, Washington DC, USA.Google Scholar
  47. USFWS-GAP. 2003. http://www.gap.uidaho.edu/ Accessed September 23, 2003.Google Scholar
  48. USDA-NASS. 1999. Farms and Land in Farms 1993–1997, U. S. Department of Agriculture Statistical Bulletin 955.Google Scholar
  49. USDA-NRCS. 1996. A Geography of Hope, USDA-Natural Resources Conservation Service. 80 pp.Google Scholar
  50. USDA-NRCS. 1997. The PLANTS Database, Version 3.5 (http://plants.usda.gov). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. Accessed September 12, 1997.Google Scholar
  51. Vaché K., Eilers J. and Santelmann M.V. 2002. Water Quality Modeling for Evaluation of Alternative Agricultural Practices in Two Iowa Watersheds. Journal of the American Water Resources Association 38: 773–787.Google Scholar
  52. Vitousek P.M., Mooney H.A., Lubchenco J., Melillo J.M.. 1997a. Human domination of earth’s ecosystems. Science 277: 494–499.Google Scholar
  53. Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H., Tilman D.G. 1997b. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737–750.Google Scholar
  54. White D., Minotti P.G., Barczak M.J., Sifneos J.C., Freemark K.E., Santelmann M., Steinitz C.F., Keister A.R. and Preston E.M. 1997. Assessing risks to biodiversity from future landscape change. Conservation Biology 11: 349–360.CrossRefGoogle Scholar
  55. White D., Preston E.M., Freemark K.E. and Kiester A.R.. 1999. A hierarchical framework for conserving biodiversity. In: Klopatek J.M. and Gardner R.H. (eds), Landscape Ecological Analysis: Issues and Applications. Springer, New York, New York, USA, pp. 127–153.Google Scholar
  56. Williams J.R., Jones C.A. and Dyke P.T. 1988. EPIC, the Erosion Productivity Index Calculator, Model Documentation Vol. 1 USDA ARS, Temple, Texas, USA.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M.V. Santelmann
    • 1
  • D. White
    • 1
  • K. Freemark
    • 3
  • J.I. Nassauer
    • 4
  • J.M. Eilers
    • 5
  • K.B. Vaché
    • 6
  • B.J. Danielson
    • 7
  • R.C. Corry
    • 8
  • M.E. Clark
    • 9
  • S. Polasky
    • 10
  • R.M. Cruse
    • 11
  • J. Sifneos
    • 1
  • H. Rustigian
    • 1
  • C. Coiner
    • 2
  • J. Wu
    • 2
  • D. Debinski
    • 7
  1. 1.Department of GeosciencesOregon State UniversityCorvallis
  2. 2.Department of Agricultural and Resource EconomicsOregon State UniversityCorvallisUSA
  3. 3.National Wildlife Research Centre, Canadian Wildlife ServiceOttawaUSA
  4. 4.School of Natural Resources and the EnvironmentUniversity of MichiganAnn ArborUSA
  5. 5.E&S Environmental ChemistryCorvallis
  6. 6.Department of Bioresource EngineeringOregon State UniversityCorvallisUSA
  7. 7.Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesUSA
  8. 8.School of Natural Resources and the EnvironmentUniversity of MichiganAnn Arbor
  9. 9.Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmes
  10. 10.Departments of Applied Economics and Ecology, Evolution and BehaviorUniversity of MinnesotaSt. Paul-MinneapolisUSA
  11. 11.Department of AgronomyIowa State UniversityAmesUSA

Personalised recommendations