Kinetics and Catalysis

, Volume 45, Issue 1, pp 61–104 | Cite as

Catalysis by Heterogenized Metal Polymers: Advances and Prospects

  • A. D. Pomogailo
Article

Abstract

The current status, trends, and a specific role for macroligands in catalysis by heterogenized metallopolymeric complexes are considered. Relations between homogeneous catalysis, enzyme catalysis, and catalysis by heterogenized metal complexes are traced. The effects of various factors on the catalysis of the main reactions used in organic synthesis—hydrogenation, polymerization (in particular, under the action of immobilized metallocene and postmetallocene catalysts), and redox processes (such as the catalysis of oxygenation, hydroperoxide oxidation, epoxidation, and hydroformylation)—are analyzed. In this review, attention is focused on the nondestructive identification of intermediates and catalytically active species in heterogenized systems. Experimental evidence is presented in support of the fact that the high activity, stability, and selectivity of immobilized catalysts are associated with a dramatic inhibition of concerted reactions in the coordination sphere of a transition metal, which result in catalyst deactivation, as well as with substrate enrichment. Prospects for the development of these highly organized hybrid systems and possibilities to consider the main requirements imposed on metal complex catalysis even at the stage of designing them are predicted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Merrifield, R.B., J. Am. Chem. Soc., 1963, vol. 85, p. 2149.Google Scholar
  2. 2.
    Hartly, F.R., Supported Metal Complexes, Dodrecht: Reidel, 1985.Google Scholar
  3. 3.
    Pomogailo, A.D., Catalysis by Polymer-Immobilized Metal Complexes, Amsterdam: Gordon and Breach, 1998.Google Scholar
  4. 4.
    Sahmi, S.K. and Reedjick, J., Coord. Chem. Rev., 1984, vol. 59, p. 1.Google Scholar
  5. 5.
    Abbott, B.J., Adv. Appl. Microbiol., 1976, vol. 20, p. 203.Google Scholar
  6. 6.
    Bahulekar, R.V., Prabhune, A.A., Siva Raman, H., and Ponrathnam, S., Polymer, 1993, vol. 34, p. 163.Google Scholar
  7. 7.
    Davankov, V.A. and Zolotarev, Y.A., J. Chromatogr., 1978, vol. 155, p. 285.Google Scholar
  8. 8.
    Syntheses and Separations Using Functional Polymers, Sherrington, D.C. and Hodge, P., Eds., Chichester: Wiley, 1988.Google Scholar
  9. 9.
    Membranes and Membrane Separation Processes, Proc. Int. Symp. Torun (Poland), 1989.Google Scholar
  10. 10.
    Chopin, A. and Quignard, F., Coord. Chem. Rev., 1998, vols. 178–180, p. 1679.Google Scholar
  11. 11.
    Dickson, R.S., Homogeneous Catalysis with Compounds of Rhodium and Iridium, Dordrecht: Reidel, 1985.Google Scholar
  12. 12.
    Handbook of Heterogeneous Catalysis, Ertl, G., Knösinger, H., and Weitkamp, J., Eds., Weinheim: Wiley-VCH, 1997.Google Scholar
  13. 13.
    Industrial Application of Homogeneous Catalysis, Mortreux, A. and Petit, F., Eds., Dordrecht: Reidel, 1988.Google Scholar
  14. 14.
    Homogeneous and Heterogeneous Catalysis, Ermakov, Yu.I. and Likholobov, V.A., Eds., Utrecht: VNU Science, 1987.Google Scholar
  15. 15.
    Pomogailo, A.D. et al., Kinet. Kataliz, A series of papers with the general title Issledovanie immobilizovannykh katalizatorov (Studies of Immobilized Catalysts), papers 1–25, 1979–1990.Google Scholar
  16. 16.
    Thompson, L.A. and Ellman, J.A., Chem. Rev., 1996, vol. 96, p. 555.Google Scholar
  17. 17.
    Sherrington, D.C., Chem. Commun., 1998, p. 2275.Google Scholar
  18. 18.
    Shuttleworth, S.J., Allin, S.M., and Sharma, P.K., Synthesis, 1997, p. 1217.Google Scholar
  19. 19.
    Michaelis, L. and Menten, M.L., Biochem. Z., 1913, vol. 49, p. 333.Google Scholar
  20. 20.
    Polymeric Reagents and Catalysts, Ford, W.T., Ed., Washington: Am. Chem. Soc., 1986.Google Scholar
  21. 21.
    Wöhrle, D. and Pomogailo, A., Advanced Functional Molecules and Polymers, Nalva, H.S., Ed., Gordon and Breach, vol. 1, p. 87.Google Scholar
  22. 22.
    Macromolecule-Metal Complexes, Ciardelli, F., Tsuchida, E., and Wöhrle, D., Eds., Berlin: Springer, 1996, p. 212.Google Scholar
  23. 23.
    Supported Catalysts and Their Applications, Sherrington D.C. and Kybett A.P., Eds., Cambridge: Royal Soc. Chem., 2001.Google Scholar
  24. 24.
    Pomogailo, A.D. and Wöhrle, D., in Metal Complexes and Metals in Macromolecules, Weinheim: Wiley-VCH, 2003.Google Scholar
  25. 25.
    Bayer, E. and Schumann, W., J. Chem. Soc., Chem. Commun., 1986, p. 949.Google Scholar
  26. 26.
    Bayston, D.J., Fraser, J.L., Ashton, M.R., Baxter, A.D., Polyvka, M.E.C., and Moses, E., J. Org. Chem., 1998, vol. 63, p. 3137.Google Scholar
  27. 27.
    Belyi, A.A., Chigladze, L.G., Rusanov, A.L., and Vol'pin, M.E., Izv. Akad. Nauk SSSR, Ser. Khim., 1989, p. 1961.Google Scholar
  28. 28.
    Pomogailo, A.D. and Uflyand, I.E., Ross. Khim. Zh., 1996, vol. 40, p. 55.Google Scholar
  29. 29.
    Pomogailo, A.D. and Uflyand, I.E., Makromolekulyarnye metallokhelaty (Macromolecular Metallochelates), Moscow: Khimiya, 1991.Google Scholar
  30. 30.
    Zhang, S.-L., Xu, Y., and Ziao, S., J. Catal., 1986, p. 7364.Google Scholar
  31. 31.
    Korolev, A.V., Brodskii, A.R., Noskova, N.F., and Sokol'skii, D.V., Dokl. Akad. Nauk SSSR, 1987, vol. 296, p. 379.Google Scholar
  32. 32.
    Michalska, Z.M. and Strelec, K., React. Funct. Polym., 2000, vol. 44, p. 189.Google Scholar
  33. 33.
    Selvaraj, P.C. and Mahadevan, V., J. Polym. Sci., Part A: Polym. Chem., 1997, vol. 35, p. 105.Google Scholar
  34. 34.
    Chandrasekaran, E.S., Grubs, R.H., and Brubaker, C.H., J. Organomet. Chem., 1976, vol. 120, p. 49.Google Scholar
  35. 35.
    Bianchini, C., Burnaby, D.G., Evans, J., Frediani, P., Meli, A., Oberhauser, W., Psaro, R., Sordelli, L., and Vizza, F., J. Am. Chem. Soc., 1999, vol. 121, p. 5961.Google Scholar
  36. 36.
    Merckle, S., Haubrich, S., and Blumel, J., J. Organomet. Chem., 2001, vol. 627, p. 44.Google Scholar
  37. 37.
    Pomogailo, A.D., Kompleksnye metalloorganicheskie katalizatory polimerizatsii olefinov (Complex Organometallic Catalysts for Olefin Polymerization), Chernogolovka: Inst. of Chemical Physics, 1986, vol. 10, p. 63.Google Scholar
  38. 38.
    Bar-Sela, G. and Warchawsky, A., React. Polym., 1983, vol. 1, p. 149.Google Scholar
  39. 39.
    Guo, X.-Y., Zang, H.-J., Li, Y.-J., and Jiang, Y.-Y., Macromol. Chem., Rapid Commun., 1985, vol. 5, p. 507.Google Scholar
  40. 40.
    Pomogailo, A.D. and Vainshtein, E.F., Kompleksnye metalloorganicheskie katalizatory polimerizatsii olefinov (Complex Organometallic Catalysts for Olefin Polymerization), Chernogolovka: Inst. of Chemical Physics, 1991, vol. 11, p. 9.Google Scholar
  41. 41.
    Leadbeater, N.E., Scott, K.A., and Scott, L.J., J. Org. Chem., vol. 65, pp. 3231, 4770.Google Scholar
  42. 42.
    Sgorlon, S., Pinna, F., and Strukul, G., J. Mol. Catal., 1987, vol. 40, p. 211.Google Scholar
  43. 43.
    Wang, R., He, Y., Lei, Z., Wang, Y., and Li, S., Chin. J. Polym. Sci., 1998, vol. 16, p. 91.Google Scholar
  44. 44.
    Datta-Gupta, N. and Bordes, T.J., J. Heterocyclic Chem., 1996, vol. 3, p. 395.Google Scholar
  45. 45.
    Uematsu, T., Nakazawa, Y., Akutsu, F., et al., Macromol. Chem. Phys., 1987, vol. 188, p. 1085.Google Scholar
  46. 46.
    Inui, T., Murakami, Y., Susuki, T., Takegami, Y., J. Mol. Catal., 1983, vol. 22, p. 93.Google Scholar
  47. 47.
    Pomogailo, A.D., Usp. Khim., 1997, vol. 66, p. 750.Google Scholar
  48. 48.
    Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.Google Scholar
  49. 49.
    Sulman, E., Bodrova, Yu., Matveeva, V., Semagina, N., Cerveny, L., Kurtc, V., Bronstein, L., Platonova, O., and Valetsky, P., Appl. Catal., A, 1999, vol. 176, p. 75.Google Scholar
  50. 50.
    Hirai, H. and Toshima, N., Tailored Metal Catalysts, Iwasawa, Y., Ed., Dordrecht: Reidel, 1986.Google Scholar
  51. 51.
    Lieto, J., Rafalko, L., and Gates, B.C., J. Catal., 1980, vol. 62, p. 149.Google Scholar
  52. 52.
    Mutin, R., Abboud, W., Bassel, J.M., and Sinou, D., J. Mol. Catal., 1985, vol. 33, p. 47.Google Scholar
  53. 53.
    Sancez-Delgado, R.A., Andriollo, A., Pupa, J., and Martin, G., Inorg. Chem., 1987, vol. 26, p. 1867.Google Scholar
  54. 54.
    Lieto, J., Wolf, M., Matrana, B.A., et al., J. Phys. Chem., 1985, vol. 89, p. 991.Google Scholar
  55. 55.
    Pomogailo, A.D., Usp. Khimii., 2003, vol. 72 (in press).Google Scholar
  56. 56.
    Pomogailo, S.I., Dzhardimalieva, G.I., Ershova, V.A., Aldoshin, S.M., and Pomogailo, A.D., Macromol. Symp., 2002, vol. 186, p. 155.Google Scholar
  57. 57.
    Jo, Y.-D., Ahn, J.-H., and Ihm, S., Polym. Intern., 1997, vol. 44,no. 1.Google Scholar
  58. 58.
    Sachtler, W.M.H., Chem. Tech., 1983, vol. 13, p. 434.Google Scholar
  59. 59.
    Li, H. and He, B.L., React. Funct. Polym., 1995, vol. 25, p. 61.Google Scholar
  60. 60.
    Lin, H. and He, C.V., J. Polym. Sci., 1998, vol. 16, p. 362.Google Scholar
  61. 61.
    Gryaznov, V.M., Metally i splavy kak membrannye katalizatory (Metals and Alloys As Membrane Catalysts), Moscow: Nauka, 1981.Google Scholar
  62. 62.
    Gudeleva, N.N., Nogerbekov, B.Yu., and Mustafina, R.G., Kinet. Katal., 1988, vol. 29,no. 6, p. 1488.Google Scholar
  63. 63.
    Catalitic Asymmetric Synthesis, Ojima, I., Ed., Berlin: VCH, 1993.Google Scholar
  64. 64.
    Salvadori, P., Pini, D., and Petri, A., Synlett, 1999, p. 1181.Google Scholar
  65. 65.
    Gravert, D.J. and Janda, K.D., Chem. Rev., 1997, vol. 97, p. 489.Google Scholar
  66. 66.
    Tollner, K., Popovich-Biro, R., Lahav, M., and Milstein, D., Science, 1997, vol. 278, p. 2100.Google Scholar
  67. 67.
    Parshall, G.W. and Itel, S.D., Homogeneous Catalysis, New York: Wiley, 1992.Google Scholar
  68. 68.
    Vankelecom, I.F.J., Tas, D., Parton, R.F., Van de Vyver, V., and Jacobs, P.A., Angew. Chem., 1996, vol. 35, p. 1346.Google Scholar
  69. 69.
    Fan, Q., Ren, C., Yeung, C., Hu, W., and Chan, A.S.C., J. Am. Chem. Soc., 1999, vol. 121, p. 7407.Google Scholar
  70. 70.
    Kobayashi, S., Endo, M., and Nagayama, S., J. Am. Chem. Soc., 1999, vol. 121, p. 11229; J. Org. Chem., 1998, vol. 63, p. 6094.Google Scholar
  71. 71.
    Gelman, F., Avnir, D., Schumann, H., and Blum, J., J. Mol. Catal., A: Chem., 1999, vol. 146, p. 123.Google Scholar
  72. 72.
    Dzhardimalieva, G.I., Golubeva, N.D., and Pomogailo, A.D., Abstracts of papers, 7th Int. Conf. on Polymer Supported Reactions in Organic Chemistry, Wroclaw, 1996, p. 86.Google Scholar
  73. 73.
    Klabunovskii, E.I., Karpeiskaya, E.I., Dzhardimalieva, G.I., Golubeva, N.D., and Pomogailo, A.D., Izv. Akad. Nauk, Ser. Khim., 1999, p. 1739.Google Scholar
  74. 74.
    Dovganyuk, V.F., Sharf, V.Z., and Saginova, L.G., Izv. Akad. Nauk SSSR, Ser. Khim., 1989, p. 777; 1990, p. 268.Google Scholar
  75. 75.
    Michalska, Z.M., Ostaszewski, B., Zientarska, J., and Sobczak, J.W., J. Mol. Catal., 1998, vol. 129, p. 207.Google Scholar
  76. 76.
    Michalska, Z.M. and Strelec, K., React. Funct. Polym., 2000, vol. 44, p. 189.Google Scholar
  77. 77.
    Sun, L., Hsu, C.C., and Bacon, D.W., J. Polym. Sci., Part A: Polym. Chem., 1994, vol. 32, p. 2127.Google Scholar
  78. 78.
    Pomogailo, A.D., Doctoral (Chem.) Dissertation, Moscow: Inst. of Chemical Physics, 1981.Google Scholar
  79. 79.
    Kritskaya, D.A., Pomogailo, A.D., Ponomarev, A.N., and Dyachkovski, F.S., J. Appl. Polym. Sci., 1980, vol. 25, p. 349; J. Polym. Sci.: Polym. Symp., 1980, vol. 68, p. 23.Google Scholar
  80. 80.
    Bravaya, N.M. and Pomogailo, A.D., J. Inorg. Organomet. Polym., 2000, vol. 10, p. 1.Google Scholar
  81. 81.
    Pomogailo, A.D., Macromol. Symp., 2002, vol. 186, p. 15.Google Scholar
  82. 82.
    Pomogailo, A.D. and Dyachkovskii, F.S., Polym. Sci, 1994, vol. 36, p. 535.Google Scholar
  83. 83.
    Pomogailo, A.D., Irzhak, V.I., and Burikov, V.I., Dokl. Akad. Nauk SSSR, 1982, vol. 266, p. 1160.Google Scholar
  84. 84.
    Bochkin, A.M., Pomogailo, A.D., and Dyachkovskii, F.S., React. Polym., 1988, vol. 9, p. 99.Google Scholar
  85. 85.
    Fuhrmann, H., Wilcke, F.W., and Bredereck, I., Plaste Kautschuk, 1990, vol. 37, p. 145.Google Scholar
  86. 86.
    Xiao, S., Wang, H., and Gai, S., Macromol. Chem. Phys., 1991, vol. 192, p. 1059.Google Scholar
  87. 87.
    Yu, G.Q. and Li, Y.L., Polymeric Materials Encyclopedia, Salamone, J.C., Ed., Boca Raton: CRC, 1996.Google Scholar
  88. 88.
    Negishi, E. and Takagashi, T., Acc. Chem. Res., 1994, vol. 27, p. 124.Google Scholar
  89. 89.
    Sobota, P. and Szafert, S., J. Chem. Soc., Dalton Trans., p. 1379.Google Scholar
  90. 90.
    Kabanov, V.A., 9th Int. Symp. on Macromolecules-Metal Complexes MMC-9, New York: Polytech. Univ., 2001, p. 20.Google Scholar
  91. 91.
    Smetanyuk, V.I., Ivanyuk, A.V., and Prudnikov, A.I., Neftekhimiya, 2000, vol. 40, p. 22.Google Scholar
  92. 92.
    Saratovskikh, S.L., Pomogailo, A.D., Babkina, O.N., and D'yachkovskii, F.S., Kinet. Katal., 1984, vol. 25,no. 2, p. 464.Google Scholar
  93. 93.
    Alt, H.G. and Palaskal, S.J., J. Organomet. Chem., 1994, vol. 472, p. 113.Google Scholar
  94. 94.
    Sin, H. and Kaminsky, W., Adv. Organomet. Chem., 1980, vol. 18, p. 79.Google Scholar
  95. 95.
    Kaminsky, W. and Renner, F., Macromol. Chem., Rapid Commun, 1993, vol. 14, p. 239.Google Scholar
  96. 96.
    Kaminsky, W., Macromol. Chem. Phys., 1996, vol. 197, p. 3907.Google Scholar
  97. 97.
    Jezequel, M., Dufaud, V., Ruiz-Garcia, M.J., and Carrillo-Hermosilla, F., J. Am. Chem. Soc., 2001, vol. 123, p. 3520.Google Scholar
  98. 98.
    Fregouese, D., Mortana, S., and Bresadola, S., J. Mol. Catal., 2001, vol. 172, p. 89.Google Scholar
  99. 99.
    Ferreira, M.L., Greco, P.P., Santos dos, J.H., and Damiani, D.E., J. Mol. Catal., 2001, vol. 172, p. 97.Google Scholar
  100. 100.
    Soga, K. and Kaminaka, M., Macromol. Chem., Rapid Commun., 1991, vol. 12, p. 367; 1992, vol. 13, p. 221.Google Scholar
  101. 101.
    Suzuki, N., Yu, J., Sinoda, N., Asami, H., Nakamura, T., Huhn, T., Fukuoka, A., Ichikawa, M., Saburi, M., and Wakatsuki, Y., Appl. Catal., A, 2002, vol. 224, p. 63.Google Scholar
  102. 102.
    Roos, P., Meier, G.B., Samson, J.J.C., Weickert, G., and Westerterp, K.R., Macromol. Chem., Rapid Commun., 1997, vol. 18, p. 319.Google Scholar
  103. 103.
    Xu, Z.-G. and Chakravarti, S., J. Appl. Polym. Sci., 2001, vol. 80, p. 81.Google Scholar
  104. 104.
    Chien, J.C.W., Yu, Z.T., Margues, M.M., Flores, J.C., and Rausch, M.D., J. Polym. Sci., Part A: Polym. Chem., 1998, vol. 36, p. 319.Google Scholar
  105. 105.
    McKenna, T.F. and Soares, J.B.P., Chem. Eng. Sci., 2001, vol. 56, p. 3981.Google Scholar
  106. 106.
    Sun, L., Hsu, C.C., and Bacon, D.W., J. Polym. Sci., Part A: Polym. Chem., 1994, vol. 32, p. 2127.Google Scholar
  107. 107.
    Roscoe, S.B., Frechet, J.M., Walzer, J.F., and Dias, A.J., Science, 1998, vol. 280, p. 270.Google Scholar
  108. 108.
    Alt, H.G., J. Chem. Soc., Dalton Trans., 1999, p. 1703.Google Scholar
  109. 109.
    Koo, K. and Marks, T.J., J. Am. Chem. Soc., 1999, vol. 121, p. 8791.Google Scholar
  110. 110.
    Alt, H.G., Schertl, P., and Köppl, A., J. Organomet. Chem., 1998, vol. 568, p. 263.Google Scholar
  111. 111.
    Grubbs, R.H., Gibbons, C., Kroll, L.C., Bonds, W.D., and Brubaker, C.H., J. Am. Chem. Soc., 1973, vol. 95, p. 2373.Google Scholar
  112. 112.
    Meng, F., Yu, G., and Huang, B., J. Polym. Sci., Part A: Polym. Chem., 1999, vol. 37, p. 37.Google Scholar
  113. 113.
    Liu, S., Meng, F., Yu, G., and Huang, B., J. Appl. Polym. Sci., 1999, vol. 71, p. 2253.Google Scholar
  114. 114.
    Xu, G., Chen, H., Zhang, X., Jiang, Z., and Huang, B., J. Polym. Sci., Part A: Polym. Chem., 1996, vol. 34, p. 2237.Google Scholar
  115. 115.
    Xu, J., Ouyang, J., Fan, Z., Chen, D., and Feng, L., J. Polym. Sci., Part A: Polym. Chem., 2000, vol. 38, p. 127.Google Scholar
  116. 116.
    Alt, H.G. and Jung, M., J. Organomet. Chem., 1999, vol. 580, p. 1.Google Scholar
  117. 117.
    Alt, H.G., Reb, A., Milius, W., and Weis, A., J. Organomet. Chem., 2001, vol. 628, p. 169.Google Scholar
  118. 118.
    Alt, H.G. and Köppl, A., Chem. Rev., 2000, vol. 100, p. 1205.Google Scholar
  119. 119.
    Pomogailo, A.D. and Savost'yanov, V.S., Synthesis and Polymerization of Metal-Containing Monomers, Boca Raton: CRC, 1994.Google Scholar
  120. 120.
    Pomogailo, A.D., Matkovskii, P.E., Konovalov, V.P., Beikhol'd, G.A., and Leonov, I.D., Dokl. Akad. Nauk SSSR, 1969, vol. 184, p. 1364.Google Scholar
  121. 121.
    Pomogailo, A.D., Baishiganov, E.B., and D'yachkovskii, F.S., Vysokomolekulyar. soedineniya, A, 1981, vol. 23, p. 220.Google Scholar
  122. 122.
    Zhu, H., Jin, S.-Kh., and Hu, N., J. Organomet. Chem., 2002, vol. 655, p. 167.Google Scholar
  123. 123.
    Andres, R., Jesus, E., Mata, F.J., Flores, J.C., and Gomez, R., Eur. J. Inorg. Chem., 2002, p. 2281.Google Scholar
  124. 124.
    Kim, J.D., Soares, B.P., and Rempel, G.L., J. Polym. Sci., Part A: Polym. Chem., 1999, vol. 37, p. 331.Google Scholar
  125. 125.
    Chung, J.S. and Hsu, J.C., Polymer, 2002, vol. 43, p. 1307.Google Scholar
  126. 126.
    Johnson, L.K., Killian, C.M., and Brookhart, M., J. Am. Chem. Soc., 1995, vol. 117, p. 6414.Google Scholar
  127. 127.
    Killian, C.M., Tempel, D.J., Johnson, L.K., and Brookhart, M., J. Am. Chem. Soc., 1996, vol. 118, p. 11664.Google Scholar
  128. 128.
    Small, B.L., Brookhart, M., and Bennett, A.M.A., J. Am. Chem. Soc., 1998, vol. 120, p. 4049.Google Scholar
  129. 129.
    Deng, L., Margl, P., and Ziegler, T., J. Am. Chem. Soc., 1999, vol. 121, p. 6479.Google Scholar
  130. 130.
    Zhang, D., Jin, G.X., and Hu, N.H., J. Chem. Soc., Chem. Commun., 2002, p. 574.Google Scholar
  131. 131.
    Skaria, S., Rajan, C.R., and Ponrathnam, S., Polymer, 1997, vol. 38, p. 1699.Google Scholar
  132. 132.
    Sangalov, Yu.A., Bashkir. Khim. Zh., 1995, vol. 2, p. 6.Google Scholar
  133. 133.
    Nozaki, K., Shibahara, F., Elzner, S., and Hiyama, T., Can. J. Chem., 2001, vol. 79, p. 593.Google Scholar
  134. 134.
    Nozaki, K., Kosaka, N., Muguruma, S., and Hiyama, T., Macromolecules, 2000, vol. 33, p. 5340.Google Scholar
  135. 135.
    Li, Y.L. and Yu, G.Q., J. Macromol. Sci.-Chem., 1990, vol. 27, p. 1335.Google Scholar
  136. 136.
    Holzhey, N., Pitter, S., and Dinjus, E., J. Organomet. Chem., 1997, vol. 541, p. 243.Google Scholar
  137. 137.
    Echmaev, S.B., Ivleva, I.N., Raevskii, A.V., Pomogailo, A.D., and Borod'ko, Yu.G., Kinet. Katal., 1983, vol. 24, p. 1428.Google Scholar
  138. 138.
    Enikolopyan, N.S., Raspopov, L.N., and Pomogailo, A.D., Dokl. Akad. Nauk SSSR, 1984, vol. 278, p. 1393; Vysokomol. Soedin. A, 1989, vol. 31, p. 2624.Google Scholar
  139. 139.
    Surkov, N.F., Davtyan, S.P., Pomogailo, A.D., and D'yachkovskii, F.S., Kinet. Katal., 1986, vol. 27,no. 3, p. 714.Google Scholar
  140. 140.
    Komon, Z.J.A. and Bazan, G.C., Macromol. Rapid Commun., 2001, vol. 22, p. 467.Google Scholar
  141. 141.
    Uflyand, I.E., Pomogailo, A.D., Golubeva, N.D., and Starikov, A.G., Kinet. Katal., 1988, vol. 29, p. 885.Google Scholar
  142. 142.
    Pomogailo, A.D., Usp. Khim., 2002, vol. 71, p. 1.Google Scholar
  143. 143.
    Denisov, E.T. and Azatyan, V.V., Inhibition of Chain Reactions, London: Gordon and Breach, 2000.Google Scholar
  144. 144.
    Sheldon, R.A. and Kochi, J.K., Metal Catalyzed Oxidation of Organic Compounds, New York: Academic, 1988.Google Scholar
  145. 145.
    Almazov, T.G. and Margolis, L.Ya., Vysokoselektivnye katalizatory okisleniya uglevodorodov (Highly Selective Catalysts for Hydrocarbon Oxidation), Moscow: Khimiya, 1988.Google Scholar
  146. 146.
    Maravin, G.B., Avdeev, M.V., and Bagrii, E.I., Neftekhimiya, 2000, vol. 40, p. 3.Google Scholar
  147. 147.
    Haber, F. and Weiss, J., Proc. R. Soc. London, Ser. A, 1934, vol. 147, p. 332.Google Scholar
  148. 148.
    Petrov, L.A., Doctoral (Chem.) Dissertation, Yekaterinburg: Inst. of Organic Synthesis, 2002.Google Scholar
  149. 149.
    Kayumova, Sh.A., Azizov, U.N., and Iskandarov, S.I., Kinet. Katal., 1986, vol. 27,no. 5, p. 1141.Google Scholar
  150. 150.
    Canali, L. and Sherrington, D.C., Chem. Soc. Rev., 1999, vol. 28, p. 85.Google Scholar
  151. 151.
    Chen, S.-H., Chin. J. Chem., 1999, vol. 17, p. 309.Google Scholar
  152. 152.
    Radkevich, V.Z., Shunkevich, A.A., Kistanova, I.E., and Radkevich, S.E., Soldatov B.C., Egizarova Yu.G., Zh. Prikl. Khim., 2000, vol. 73, p. 1861.Google Scholar
  153. 153.
    Maslinska-Solich, J. and Szaton, U., React. Polym., 1993, vol. 19, p. 191.Google Scholar
  154. 154.
    Fin Pat. 71927, 1986.Google Scholar
  155. 155.
    Nikitin, A.B., Pomogailo, A.D., and Rubailo, V.L., Izv. Akad. Nauk SSSR, Ser. Khim., 1987, p. 36.Google Scholar
  156. 156.
    Nikitin, A.B., Pomogailo, A.D., Maslov, S.A., and Rubailo, V.L., Neftekhimiya, 1987, vol. 27, p. 234.Google Scholar
  157. 157.
    Kholuiskaya, S.N., Pomogailo, A.D., Bravaya, N.M., Pomogailo, S.I., and Maksakov, V.A., Kinet. Katal., 2003, vol. 44,no. 6, p. 831.Google Scholar
  158. 158.
    Vainstein, E.F. and Zaikov, G.E., Polymer Yearbook, Pethric, R.A., Ed., London: Harwood, 1993, vol. 10, p. 231.Google Scholar
  159. 159.
    Efendiev, A.A., Macromol. Symp., 2000, vol. 156, p. 155.Google Scholar
  160. 160.
    Men'shikov, S.Yu., Vurasko, A.V., Petrov, L.A., Molochnikov, L.S., Kovalyova, E.G., and Efendiev, A.A., Proc. V Int. Sci. Conf. on High-Tech in Chemical Engineering, Yaroslavl, 1998, vol. 2, p. 455.Google Scholar
  161. 161.
    Kokorin, A.I., Izv. Akad. Nauk, Ser. Khim., 1997, p. 1824.Google Scholar
  162. 162.
    Jose, L. and Rajasekharan Pillai, V.N., Polymer, 1998, vol. 39, p. 229.Google Scholar
  163. 163.
    Sapunov, V.N., Tr. Moskovskogo khimiko-tekhnologicheskogo instituta (Collected Papers of Chemicotechological Institute), 1986, no. 141, p. 42.Google Scholar
  164. 164.
    Bhaduri, S. and Khwaja, H., J. Chem. Soc., Dalton Trans., 1983, vol. 25, p. 415.Google Scholar
  165. 165.
    Zhu, W. and Ford, W.T., J. Polym. Sci., Part A: Polym. Chem., 1992, vol. 30, p. 1305.Google Scholar
  166. 166.
    Filippov, A.P. and Polishchuk, O.A., Kinet. Katal., 1984, vol. 25, p. 1348.Google Scholar
  167. 167.
    Kamaluddin, T.N., Oxid. Commun., 1999, vol. 22, p. 519.Google Scholar
  168. 168.
    Chapin, E.C., Twohig, E.F., Keys, L.D., and Corski, K.M., J. Appl. Polym. Sci., 1982, vol. 27, p. 811.Google Scholar
  169. 169.
    Farrall, M.J., Alexis, M., and Trecarlen, M., Nouv. J. Chim., 1983, vol. 7, p. 449.Google Scholar
  170. 170.
    Guidote, A.M., Ando, K., Kurusu, Y., Nagao, N., and Masuyama Y., Inorg. Chim. Acta, 2001, vol. 314, p. 27.Google Scholar
  171. 171.
    Kurusu, Y., Macromol. Symp., 2002, vol. 186, p. 7.Google Scholar
  172. 172.
    Selvaraj, P.C. and Mahadevan, V., Polymer, 1998, vol. 39, p. 1741.Google Scholar
  173. 173.
    Xavier, R. and Mahadevan, V., J. Polym. Sci., Part A: Polym. Chem., 1992, vol. 30, p. 2665.Google Scholar
  174. 174.
    Maslinska-Solich, J., Macionga, A., and Turczyn, R., React. Funct. Polym., 1995, vol. 26, p. 35.Google Scholar
  175. 175.
    Sanchez, M., Chap, N., Cazaux, J.-B., and Meunier, B., Eur. Inorg. Chem., 2001, p. 1775.Google Scholar
  176. 176.
    Hadasch, A., Sorokin, A., Rabion, A., and Meunier, B., New J. Chem., 1998, vol. 22, p. 45.Google Scholar
  177. 177.
    Sorokin, A., Fraisse, L., Rabion, A., and Meunier, B., J. Mol. Catal. A: Chem., 1997, vol. 117, p. 103.Google Scholar
  178. 178.
    Minutolo, F., Pini, D., Petri, A., and Salvadori, P., Tetrahedron: Asymmetry, 1996, vol. 7, p. 2293.Google Scholar
  179. 179.
    Han, H. and Janda, K.D., Tetrahedron Lett., 1997, vol. 38, p. 1527.Google Scholar
  180. 180.
    Lohray, B.B., Nandanan, E., and Bhushan, V., Tetrahedron: Asymmetry, 1996, vol. 7, p. 2805.Google Scholar
  181. 181.
    Vidal-Ferran, A., Bampost, N., Moyano, A., Pericas, M.A., Riera, A., and Sanders, J.K.M., J. Org. Chem., 1998, vol. 63, p. 6309.Google Scholar
  182. 182.
    Annis, D.A. and Jacobsen, E.N., J. Am. Chem. Soc., 1999, vol. 121, p. 4147.Google Scholar
  183. 183.
    Bergbreiter, D.E., Catal. Today, 1998, vol. 42, p. 389.Google Scholar
  184. 184.
    Ding, M. and Stille, J.K., Macromolecules, 1983, vol. 16, p. 839.Google Scholar
  185. 185.
    Lindner, E., Auer, F., Baumann, A., Wegner, P., Mayer, H.A., Bertagnolli, H., Reinohl, U., Ertel, T.S., and Weber, A., J. Mol. Catal. A. Chem., 2000, vol. 157, p. 97.Google Scholar
  186. 186.
    Hartley, F.R., Murray, S.G., and Sayer, A.T., J. Mol. Catal., 1986, vol. 38, p. 295.Google Scholar
  187. 187.
    Stille, J.K., J. Macromol. Sci. A, 1984, vol. 21, p. 1689.Google Scholar
  188. 188.
    Parrinello, G., Deschenaux, R., and Stille, J.K., J. Org. Chem., 1986, vol. 51, p. 4189.Google Scholar
  189. 189.
    Henrici-Olive, G. and Olive, S., The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide, Moscow: Mir, 1987.Google Scholar
  190. 190.
    Maitlis, P.M., Pure Appl. Chem., 1989, vol. 61, p. 1747.Google Scholar
  191. 191.
    Sellner, H., Rheiner, P.B., and Seebach, D., Helv. Chim. Acta, 2002, vol. 85, p. 352.Google Scholar
  192. 192.
    Hosoya, K., Tsuji, S., Yoshizako, K., Kimata, K., Akai, T., and Tanaka, N., React. Funct. Polym, 1996, vol. 29, p. 159.Google Scholar
  193. 193.
    Karklin', L.N., Klyuev, M.V., and Pomogailo, A.D., Kinet. Katal., 1983, vol. 24,no. 2, p. 408.Google Scholar
  194. 194.
    Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, p. 369.Google Scholar
  195. 195.
    Shmidt, F.K., Kataliz kompleksami metallov pervogo perekhodnogo ryada reaktsii gidrirovaniya i dimerizatsii (Catalysis by First-Row Transition Metal Complexes for Hydrogenation and Dimerization Reactions), Irkutsk: IGU, 1986.Google Scholar
  196. 196.
    Echmaev, S.B., Ivleva, I.N., Golubeva, N.D., Pomogailo, A.D., and Borod'ko, Yu.G., Kinet. Katal., 1986, vol. 27,no. 2, p. 394.Google Scholar
  197. 197.
    Ivleva, I.N., Echmaev, S.B., Golubeva, N.D., and Pomogailo, A.D., Kinet. Katal., 1983, vol. 24,no. 3, p. 663.Google Scholar
  198. 198.
    Serebryanaya, I.V., Khrushch, N.E., Leonov, A.G., Pomogailo, A.D., and D'yachkovskii, F.S., Kinet. Katal., 1990, vol. 31,no. 3, p. 540.Google Scholar
  199. 199.
    Pomogailo, A.D., Usp. Khim., 2000, vol. 69, p. 60.Google Scholar
  200. 200.
    Valkenberg, M.N. and Holderich, W.F. Cat. Rev. — Sci. Eng., 2002, vol. 44, P. 321.Google Scholar
  201. 201.
    Anderson, N.G., Org. Process Res. Dev., 2001, vol. 5, p. 613.Google Scholar
  202. 202.
    Kobayashi, S., Curr. Opinion in Chem. Biol., 2000, vol. 4, p. 338.Google Scholar
  203. 203.
    Amigoni-Gerbier, S., Desert, S., Gulik-Kryswicki, T., and Larpent C., Macromolecules, 2002, vol. 35, p. 1644.Google Scholar
  204. 204.
    Obrey, S.J. and Barron, A.R., Macromolecules, 2002, vol. 35, p. 1499.Google Scholar
  205. 205.
    Luo, H.-K., Tang, R.-G., and Gao, K.-J., J. Catal., 2002, vol. 210, p. 328.Google Scholar
  206. 206.
    Shim, S.-E., Cha, Y.J., Byun, J.-M., and Choe, S., J. Appl. Polym. Sci., 1999, vol. 71, p. 2259.Google Scholar
  207. 207.
    Pyun, J. and Matyjaszewski, K., Kowalewski, T., Savin, D., Patterson, G., Kickebick, G., and Huesing, N., J. Am. Chem. Soc., 2001, vol. 123, p. 9445.Google Scholar
  208. 208.
    Hong, S.C. and Matyjaszewski, K., Macromolecules, 2002, vol. 35, p. 7592.Google Scholar
  209. 209.
    Held, A. and Mecking, S., Chem. Eur. J., 2000, vol. 6, p. 4623.Google Scholar
  210. 210.
    Mecking, S., Held, A., and Bauers, F.M., Angew. Chem., 2002, vol. 41, p. 544.Google Scholar
  211. 211.
    Jafarpour, L., Heck, M.-P., Baylon, C., Lee, H.M., Mioscowski, C., and Nolan, S., Organometallics, 2002, vol. 21, p. 671.Google Scholar
  212. 212.
    Wong, W.-Y., Lu, G.-L., Ng, K.-F., Choi, K.-H., and Lin, Z., J. Chem. Soc., Dalton Trans., 2001, p. 3250.Google Scholar
  213. 213.
    Takaki, K., Shimasaki, Y., Shishido, T., and Takehira, K., Bull. Chem. Soc. Jpn., 2002, vol. 75, p. 311.Google Scholar
  214. 214.
    Mukherjee, D.K. and Saha, C.R., J. Catal., 2002, vol. 210, p. 255.Google Scholar
  215. 215.
    Angelino, M.D. and Laibinis, P.E., J. Polym. Sci., Part A: Polym. Chem., 1999, vol. 37, p. 3888.Google Scholar
  216. 216.
    Zhang, D., Jin, G.-X., and Hu, N.-H., Eur. J. Inorg. Chem., 2003, p. 1570.Google Scholar
  217. 217.
    Dzhardimalieva, G.I. and Pomogailo, A.D., Kinet. Katal., 1998, vol. 39,no. 6, p. 893.Google Scholar
  218. 218.
    Chem. Rev., 2002, vol. 102,no. 10.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. D. Pomogailo
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations