Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 2, pp 415–426 | Cite as

Design considerations and an example of application of an in-house made TG-MS interface

  • A. Pappa
  • S. Kyriakou
  • K. Mikedi
  • N. Tzamtzis
  • M. Statheropoulos


The design, the abilities and a characteristic application of an in-house made interface for combining thermogravimetry (TG) with mass spectrometry (MS) are presented. The TG-MS interface consists mainly of three co-axial tubes. The position of the intermediate tube was determined after calculation of the temperature profile at the TG furnace exit tube. The inner tube position was determined taking into consideration its protection against condensation of heavy molecules and the time delay for the transfer of the evolved gases. This interface allows either continuous sampling and transferring of the evolved gases from the TG to the MS or repetitive introduction of short sampling pulses of TG evolved gases to MS. The interface is capable of coupling various commercial instruments. In the present work two configurations of this interface are demonstrated. Finally an example of application of this interface on forest fuel pyrolysis is presented.

pyrolysis design engineering computations hyphenated methods pine-needles TG-MS interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Jaenicke-Rößler and G. Leitner, Thermochim. Acta,295(1997)133CrossRefGoogle Scholar
  2. 2.
    K. G. H. Raemaekers and J. C. Bart, Thermochim. Acta,295(1997)1CrossRefGoogle Scholar
  3. 3.
    W. M. Groenewood and W. de Jong, Thermochim. Acta,286(1996)341CrossRefGoogle Scholar
  4. 4.
    M. Maciejewski and A. Baiker, Thermochim. Acta,295(1997)95CrossRefGoogle Scholar
  5. 5.
    Q.-F. Liu, C.-X. Lv, Y.-G. Yang, F. He and L. Ling, Thermochim. Acta,419(2004)205CrossRefGoogle Scholar
  6. 6.
    J. M. Rollinger, Cs. Novák, Zs. Éhen and K. Marthi, J. Therm. Anal. Cal,73(2003)519CrossRefGoogle Scholar
  7. 7.
    M. Statheropoulos, S. Kyriakou and N. Tzamtzis, Thermochim. Acta,322(1998)167CrossRefGoogle Scholar
  8. 8.
    M. Statheropoulos and K. Mikedi, Anal. Chim. Acta,446(2001)353CrossRefGoogle Scholar
  9. 9.
    M. Statheropoulos, K. Mikedi, N. Tzamtzis and A. Pappa, Anal. Chim. Acta,461(2002)215CrossRefGoogle Scholar
  10. 10.
    A. Pappa, K. Mikedi, N. Tzamtzis and M. Statheropoulos, J. Anal. Appl. Pyrol, 67 (2003)221CrossRefGoogle Scholar
  11. 11.
    M. Statheropoulos, S. Kyriakou and A. Pappa, Thermochim. Acta,329(1999)83CrossRefGoogle Scholar
  12. 12.
    A. A. Pappa, N. E. Tzamtzis, M. K. Statheropoulos, S. E. Liodakis and G. K. Parissakis, J. Anal. Appl. Pyrol,31(1995)85CrossRefGoogle Scholar
  13. 13.
    A. A. Pappa, N. E. Tzamtzis, M. K. Statheropoulos and G. K. Parissakis, Thermochim. Acta, 261 (1995)165CrossRefGoogle Scholar
  14. 14.
    S. Liodakis, M. Statheropoulos, N. Tzamtzis, A. Pappa and G. K. Parissakis, Thermochim. Acta,278(1996)99CrossRefGoogle Scholar
  15. 15.
    N. S. Arnold, W. H. McClennen and H. L. C. Meuzelaar, Anal. Chem,63(1991)299CrossRefGoogle Scholar
  16. 16.
    W. H. McClennen, R. M. Buchanan, N. S. Arnold, J. P. Dworzanski and H. L. C. Meuzelaar, Anal. Chem,65(1993)2819CrossRefGoogle Scholar
  17. 17.
    M. Statheropoulos, N. Tzamtzis, S. Karma and A. Pappa, Fire and Safety Science, (accepted for publication).Google Scholar
  18. 18.
    F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer,2 nd edition Wiley, 1985, p.769Google Scholar
  19. 19.
    M. Statheropoulos and S. A. Kyriakou, Anal. Chim. Acta,409(2000)203CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • A. Pappa
    • 1
  • S. Kyriakou
    • 1
  • K. Mikedi
    • 1
  • N. Tzamtzis
    • 1
  • M. Statheropoulos
    • 1
  1. 1.National Technical University of AthensSchool of Chemical EngineeringAthensGreece

Personalised recommendations