Journal of Thermal Analysis and Calorimetry

, Volume 77, Issue 1, pp 133–142 | Cite as

An attempt to improve the pozzolanic activity of waste aluminosilicate catalyst

  • Barbara PacewskaEmail author
  • I. Wilińska
  • M. Bukowska
  • G. Blonkowski
  • Wiesława Nocuń-Wczelik


The so-called pozzolanic activity of waste catalysts from fluidised cracking was investigated. For this purpose a series of cement mixtures with this waste material were prepared and subsequently the pastes and mortars were produced. Waste aluminosilicate catalyst was used both in raw form and after grinding in a ball mill for 60 min. The hydrating mixtures were subjected to the calorimetric measurements in a non-isothermal/non-adiabatic calorimeter. After an appointed time of curing the hydrating materials were studied by thermal analysis methods (TG, DTG, DTA). The pozzolanic activity factors were determined, basing on the compressive strength data. The increased activity of cement — ground pozzolana systems has been thus proved. An accelerated Ca(OH)2 consumption as well as higher strength were found for materials containing ground waste catalyst, as compared to those, mixed with the raw one. Thus grinding was also proved to result in mechanical activation in the case of the waste catalyst from fluidised cracking.

cement hydration pozzolanic activity waste aluminosilicate catalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Badanoiu, M. Georgescu and A. Puri, J. Therm. Anal. Cal., 74 (2003) 65.CrossRefGoogle Scholar
  2. 2.
    J. Dweck, P. F. Ferreira da Silva, R. Silva Aderne, P. M. Büchler and F. K. Cartledge, J. Therm. Anal. Cal., 71 (2003) 821.CrossRefGoogle Scholar
  3. 3.
    B. Pacewska, I. Wilińska, M. Bukowska and W. Nocuń-Wczelik, Cem. Concr. Res., 32 (2002) 1823.CrossRefGoogle Scholar
  4. 4.
    B. Pacewska, M. Bukowska, I. Wilińska and M. Swat, Cem. Concr. Res., 32 (2002) 145.CrossRefGoogle Scholar
  5. 5.
    B. Pacewska, I. Wilińska and M. Bukowska, J. Therm. Anal. Cal., 60 (2000) 71.CrossRefGoogle Scholar
  6. 6.
    M. Bukowska, B. Pacewska and I. Wilińska, J. Therm. Anal. Cal., 74 (2003) 931.CrossRefGoogle Scholar
  7. 7.
    J.-H. Wu, W.-L. Wu and K.-C. Hsu, Cem. Concr. Res., 33 (2003) 245.CrossRefGoogle Scholar
  8. 8.
    K.-C. Hsu, Y.-S. Tseng, F.-F. Ku and N. Su, Cem. Concr. Res., 31 (2001) 1815.CrossRefGoogle Scholar
  9. 9.
    J. Payá, J. Monzó, M. V. Borrachero and S. Velázquez, Cem. Concr. Res., 33 (2003) 603.CrossRefGoogle Scholar
  10. 10.
    N. Su, H.-Y. Fang, Z.-H. Chen and F.-S. Liu, Cem. Concr. Res., 30 (2000) 1773.CrossRefGoogle Scholar
  11. 11.
    E. Furimsky, Catal. Today, 30 (1996) 223.CrossRefGoogle Scholar
  12. 12.
    J. Payá, J. Monzó and M. V. Borrachero, Cem. Concr. Res., 29 (1999) 1773.CrossRefGoogle Scholar
  13. 13.
    C. Shi and R. L. Day, Cem. Concr. Res., 31 (2001) 813.CrossRefGoogle Scholar
  14. 14.
    Polish/European Standard PN-EN-197-1:2002, Cement — Common cement — Composition, specifications and conformity evaluation.Google Scholar
  15. 15.
    Instructions of Building Research Institute no. 328, Use of fly ashes in aggregate concretes, ITB, Warsaw 1994 (in Polish).Google Scholar
  16. 16.
    P. C. Hewlett (Ed.), Lea's chemistry of cement and concrete, Arnold, London 1998.Google Scholar
  17. 17.
    W. Roszczynialski, J. Therm. Anal. Cal., 70 (2002) 387.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • Barbara Pacewska
    • 1
    Email author
  • I. Wilińska
    • 1
  • M. Bukowska
    • 1
  • G. Blonkowski
    • 1
  • Wiesława Nocuń-Wczelik
    • 2
  1. 1.Faculty of Civil Engineering, Mechanics and PetrochemistryWarsaw University of TechnologyPłock ul. Łukasiewicza 17Poland
  2. 2.Faculty of Material Science and CeramicsUniversity of Science and Technology AGH al. Mickiewicza 30CracowPoland

Personalised recommendations