Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 76, Issue 3, pp 965–973 | Cite as

Heat capacities and thermodynamic properties of chrysanthemic acid

  • B. XueEmail author
  • J.-Y. Wang
  • Z.-C. Tan
  • S.-W. Lu
  • S.-H. Meng
Article

Abstract

The heat capacities of chrysanthemic acid in the temperature range from 80 to 400 K were measured with a precise automatic adiabatic calorimeter. The chrysanthemic acid sample was prepared with the purity of 0.9855 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T m, enthalpy and entropy of fusion, Δfus H m, Δfus S m, were determined to be 390.741±0.002 K, 14.51±0.13 kJ mol-1, 37.13±0.34 J mol-1 K-1, respectively. The thermodynamic functions of chrysanthemic acid, H (T)-H(298.15), S (T)-S(298.15) and G (T)-G (298.15) were reported with a temperature interval of 5 K. The TG analysis under the heating rate of 10 K min-1 confirmed that the thermal decomposition of the sample starts at ca. 410 K and terminates at ca. 471 K. The maximum decomposition rate was obtained at 466 K. The purity of the sample was determined by a fractional melting method.

TG thermal decomposition heat capacity adiabatic calorimetry thermodynamic function chrysanthemic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Lebedev, T. G. Kulagina, N. N. Smirnova and Z. B. Shifrina, J. Therm. Anal. Cal., 74 (2003) 735.CrossRefGoogle Scholar
  2. 2.
    R. M. Vinnik and V. A. Roznyatovsky, J. Therm. Anal. Cal., 73 (2003) 819.CrossRefGoogle Scholar
  3. 3.
    J. A. A. Sales, A.G. S. Prado and C. Airoldi, J. Therm. Anal. Cal., 70 (2002) 135.CrossRefGoogle Scholar
  4. 4.
    E. F. Jr. Westrum, G. T. Furukawa and J. P. McCullough, Experimental Thermodynamics, Vol. 1, J. P. McCullough and D.W. Scott (Eds), Butterworths, London 1968, p. 133.Google Scholar
  5. 5.
    Z. C. Tan, L. X. Zhou, S. X. Chen and A. X. Yin, Scientia Sinica (Series B), 26 (1983) 1014.Google Scholar
  6. 6.
    Z. C. Tan, A. X. Yin, S. X. Chen and L. X. Zhou, Science in China (Series B), 34 (1991) 560.Google Scholar
  7. 7.
    Z. C. Tan and B. Xue, J. Therm. Anal. Cal., 63 (2001) 297.CrossRefGoogle Scholar
  8. 8.
    D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein and E. D. West, J. Res. Natl. Bur. Stands., 87 (1982) 159.Google Scholar
  9. 9.
    J. H. Chen and C. R. Li, Huaxue, Tongbao, 1 (1980) 7.Google Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • B. Xue
    • 1
    Email author
  • J.-Y. Wang
    • 1
  • Z.-C. Tan
    • 2
  • S.-W. Lu
    • 2
  • S.-H. Meng
    • 2
  1. 1.School of Petrochemical EngineeringShenyang University of TechnologyLiaoyangP.R. China
  2. 2.Thermochemistry Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of ScienceDalianP.R. China

Personalised recommendations