Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 76, Issue 3, pp 949–954 | Cite as

Determination of radiation power of the solar-simulated light source

  • R. GajerskiEmail author
  • M. Radecka
  • M. Wierzbicka
  • M. Rekas
Article

Abstract

Calorimetric method for the determination of radiation power of the solar-simulated light sources has been proposed. The application of the differential scanning calorimetry guarantees very high sensitivity (1 mW) of the measuring property, independent of the wavelength (within 300-1200 nm). The applied method yields reliable calibration curves of the radiation power vs. wavelength with good accuracy.

microcalorimetry radiation power solar-simulated light source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Tryk, A. Fujishima and K. Honda, Electrochim. Acta, 45 (2000) 2363.CrossRefGoogle Scholar
  2. 2.
    M. Radecka, K. Zakrzewska, M. Wierzbicka, A. Gorzkowska and S. Komornicki, Solid State Ionics, 157 (2002) 379.CrossRefGoogle Scholar
  3. 3.
    T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, Int. J. Hydrogen Energy, 27 (2002) 991.CrossRefGoogle Scholar
  4. 4.
    J. Gerischer, in: Solar energy conversion, B. O. Seraphin, Ed., Springer, Berlin 1979 p. 115.Google Scholar
  5. 5.
    R. D. Hudson, Infrared System Engineering, Wiley, New York 1969, p. 6.Google Scholar
  6. 6.
    P. W. Kruse, L. D. McGlauchlin and R. B. McQuistan, Elements of Infrared Technology, Wiley, London 1962.Google Scholar
  7. 7.
    P. W. Kruse, in R. J. Keyes, (Ed.), Optical in Infrared Detectors, Springer Verlag, Berlin 1977, p. 5.Google Scholar
  8. 8.
    E. H. Putley, in R. J. Keyes, (Ed.), Optical in Infrared Detectors, Springer Verlag, Berlin 1977, p. 71.Google Scholar
  9. 9.
    F. Hofmann, G. Müller and H. J. Sölter, J. Therm. Anal. Cal., 53 (1998) 717.CrossRefGoogle Scholar
  10. 10.
    J. Majling, P. Šimon and V. Khunová, J. Therm. Anal. Cal., 67 (2002) 201.CrossRefGoogle Scholar
  11. 11.
    J. J. Suñol, J. Saurina, F. Carrillo and X. Colom, J. Therm. Anal. Cal., 72 (2003) 753.CrossRefGoogle Scholar
  12. 12.
    G. van Assche, B. van Mele and Y. Saruyama, Thermochim. Acta, 377 (2001) 125.CrossRefGoogle Scholar
  13. 13.
    C. H. Schleseman and F. Brockman, J. Opt. Soc. Am., 35 (1945) 755.Google Scholar
  14. 14.
    P. B. Felgett, J. Opt. Soc. Am., 39 (1949) 970.CrossRefGoogle Scholar
  15. 15.
    B. Ilic, D. Czaplewski, P. Neuzil, T. Stanczyk, J. Blough and G. J. Maclay, J. Mater. Sci., 35 (2000) 3447.CrossRefGoogle Scholar
  16. 16.
    CRC Handbook of Chemistry and Physics, 60th edition, CRC Press Inc. Boca Raton, Florida, p. B–82 and D-62.Google Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • R. Gajerski
    • 1
    Email author
  • M. Radecka
    • 1
  • M. Wierzbicka
    • 1
  • M. Rekas
    • 1
  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and Technology al. Mickiewicza 30, 30-059CracowPoland

Personalised recommendations