Advertisement

Comments on surface structure analysis by water and nitrogen adsorption

Article

Abstract

Specific surface area and pore size distribution are determined usually from adsorption isotherms at low temperatures using nitrogen or noble gases. These are not absolute parameters and the measuring methods are fraught with serious difficulties. General problems of sorption measurements and recent developments are discussed. To obtain information for practical purposes these measurements need to be supplemented by investigations of the sorbate/sorbent system used in practice. Results of the measurement of nitrogen and water vapour adsorption on different materials are compared.

adsorption nitrogen water vapour fractality surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by Powders & Porous Solids. Academic Press, San Diego 1999.Google Scholar
  2. 2.
    ISO 9277, Determination of the specific surface area of solids by gas adsorption using the BET method 1995.Google Scholar
  3. 3.
    A. Dąbrowski, P. Klobes, K. Meyer and E. Robens, Current state of the standardization of particle and surface characterization. Particle & Particle Systems 2003.Google Scholar
  4. 4.
    S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60 (1938) 309.CrossRefGoogle Scholar
  5. 5.
    A. L. McClellan and H. F. Harnsberger, J. Coll. Int. Sci., 23 (1967) 577.CrossRefGoogle Scholar
  6. 6.
    R. Sh. Mikhail and E. Robens, Microstructure and Thermal Analysis of Solid Surfaces, Wiley, Chichester 1983.Google Scholar
  7. 7.
    W. Thomson, Phil. Mag., 42 (1871) 282, 448.Google Scholar
  8. 8.
    E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 73 (1951) 373.CrossRefGoogle Scholar
  9. 9.
    ISO WD 15901-2 (2000), Pore size distribution and porosity of solid materials. Evaluation by mercury porosimetry and gas sorption, Part 2: Gas sorption, ISO/TC 24/SC WG 3.Google Scholar
  10. 10.
    A. Dąbrowski (Ed.), Adsorption and its Application in Industry and Environmental Protection. 2 Vols. Surface Science and Catalysis, Vol. 120 A/B, Elsevier, Amsterdam 1999.Google Scholar
  11. 11.
    A. Dąbrowski, Adv. Coll. Int. Sci., 93 (2001) 135–224.CrossRefGoogle Scholar
  12. 12.
    D. Avnir (Ed.), The Fractal Approach to Heterogeneous Chemistry, Wiley, Chichester 1989.Google Scholar
  13. 13.
    A. V. Neimark, E. Robens and K. K. Unger, Z. Phys. Chem., 187 (1994) 265.Google Scholar
  14. 14.
    J. Goworek and W. Stefaniak, J. Porous Materials 3 (1996) 121.CrossRefGoogle Scholar
  15. 15.
    W. Rudziński, T. Borowiecki, T. Pańczyk and A. Dominko, Langmuir, 16 (2000) 8037.CrossRefGoogle Scholar
  16. 16.
    W. Rudziński, J. Phys. Chem., B 105 (2001) 10847.CrossRefGoogle Scholar
  17. 17.
    P. Staszczuk, D. Sternik and G. W. Chądzyński, J. Therm. Anal. Cal., 71 (2003) 173.CrossRefGoogle Scholar
  18. 18.
    B. M. Kats and V. V. Kutarov, Langmuir, 12 (1996) 2762.CrossRefGoogle Scholar
  19. 19.
    W. C. Connor, Physical adsorption in microporous solids. In: J. Fraissard, (Ed.), Physical Adsorption, Experiment, Theory and Applications, Kluwer, Dordrecht 1997, p. 33.Google Scholar
  20. 20.
    J. Schröder, Nachweis und Bedeutung von Mikroporen. GIT Fachz. Lab., 32 (1986) 10, 978 und 11, 1095.Google Scholar
  21. 21.
    J. Seifert and G. Emig, Chem.-Ing.-Tech., 59 (1987) 475.CrossRefGoogle Scholar
  22. 22.
    M. W. Maddox and K. E. Gubbins, Int. J. Thermophs., 15 (1994) 6.Google Scholar
  23. 23.
    A. de Keizer, Th. Michalski and G. H. Findenegg, Pure Appl. Chem., 10 (1991) 1495.Google Scholar
  24. 24.
    P. Tarazona, U. Marini Bettolo Marconi and R. Evans, Mol. Phys., 60 (1987) 573.CrossRefGoogle Scholar
  25. 25.
    A. V. Neimark and P. I. Ravikovitch, Density functional theory of adsorption hysteresis and nanopore characterization, In: K. K. Unger, G. Kreysa, J. P. Baselt (Eds), Characterization of Porous Solids V. Studies in Surface Science and Catalysis, Vol. 128. Elsevier, Amsterdam 2000, p. 51.Google Scholar
  26. 26.
    G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn., 16 (1983) 470.Google Scholar
  27. 27.
    A. Saito and C. Foley, AIChE Journal, 37 (1991) 429.CrossRefGoogle Scholar
  28. 28.
    A. Saito and C. Foley, Microporous Mater., 3 (1995) 531.CrossRefGoogle Scholar
  29. 29.
    J. García-Martínez, Carzola-Amoróros and A. Linares-Solano, Further evidence of the usefulness of CO'2' adsorption to characterise microporous solids, In: K. K. Unger, G. Kreysa, J. P. Baselt (Eds), Characterization of Porous Solids V. Studies in Surface Science and Catalysis, Vol. 128, Elsevier, Amsterdam 2000, p. 485.Google Scholar
  30. 30.
    P. Staszczuk, D. Sternik and G. W. Chądzyński, J. Therm. Anal. Cal., 53 (1998) 597.CrossRefGoogle Scholar
  31. 31.
    Quantachrome Corp., 1900 Corporate Drive, Boynton Beach, Florida 33426 USA, www.quantachrome.com.Google Scholar
  32. 32.
    Th. Gast, T. Brokate and E. Robens, Vacuum Weighing. In: M. Kochsiek, M. Gläser (Eds), Comprehensive Mass Metrology, Wiley, Weinheim 2000, p. 296.Google Scholar
  33. 33.
    Sartorius AG, 37070 Göttingen, Germany, www.sartorius.com.Google Scholar
  34. 34.
    Surface Measurement Systems Ltd., 3 Warple Mews, Warple Way, London W3 0RF, www.smsuk.co.uk.Google Scholar
  35. 35.
    Rt-Science, Horst Reichert, Mendelssohnstr. 32, D-65817 Eppstein, Germany, www.rt-science.de.Google Scholar
  36. 36.
    E. Robens, B. Benzler, H. Reichert and K. K. Unger, J. Therm. Anal. Cal., 62 (2000) 435.CrossRefGoogle Scholar
  37. 37.
    E. Robens, B. Benzler, G. Büchel, H. Reichert and K. Schumacher, Cem. Concr. Res., 32 (2002) 87.CrossRefGoogle Scholar
  38. 38.
    O. Jäntti, J. Junttila and E. Yrjänheikki, Suomen Kemistilehti A, 43 (1970) 214.Google Scholar
  39. 39.
    E. Robens, C. H. Massen, J. A. Poulis and P. Staszczuk, Adsorpt. Sci. Technol., 17 (1999) 801.Google Scholar
  40. 40.
    J. A. Poulis, G. Reichenauer, C. H. Massen and E. Robens, Z. Phys. Chem., 216 (2002) 1123.Google Scholar
  41. 41.
    J. A. Poulis, C. H. Massen, E. Robens and G. Reichenauer, The application of Jäntti's method for the fast calculation of equilibrium in the case of multilayer adsorption. In: F. Rodríguez-Reinoso, B. McEnaney, J. Rouquerol, K. Unger (Eds), Characterization of Porous Solids VI. Studies in Surface Science and Catalysis, Vol. 144, Elsevier, Amsterdam 2002.Google Scholar
  42. 42.
    R. Kohlrausch, Ann. Phys. (Leipzig), 12 (1847) 393.Google Scholar
  43. 43.
    A. J. Juhola, Kemia-Kemi 4 (1977) 543.Google Scholar
  44. 44.
    E. Robens, C. H. Massen and J. J. Hardon, Thermochim. Acta, 235 (1994) 125.CrossRefGoogle Scholar
  45. 45.
    J. Hagymassy, Jr., S. Brunauer and R. Sh. Mikhail, J. Coll. Int. Sci., 29 (1969) 485.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2004

Authors and Affiliations

  1. 1.Institut für Anorganische Chemie und Analytische Chemie der JohannesGutenberg-UniversitätMainzGermany
  2. 2.Wydziatu chemiiUniwersytet Marii Curie-SkłodowskiejLublinPoland
  3. 3.Physical Research InstituteUniversity of OdessaOdessaUkraine

Personalised recommendations