Journal of Thermal Analysis and Calorimetry

, Volume 75, Issue 3, pp 815–836 | Cite as

New Physico-Chemical Properties of Extremely Diluted Aqueous Solutions

Abstract

The extremely diluted solutions are anomalous solutions obtained through the iteration of two processes: a dilution 1:100 in mass and a succussion. The iteration is repeated until extreme dilutions are reached (less than 1·10-5mol kg-1) to the point that we may call the resulting solution an extremely diluted solution, namely the composition of the solution is identical to that of the solvent used (e.g. twice distilled water). We conducted thermodynamic and transport measurements of the solutions and of the interaction of those solutions with acids or bases. The purpose of this study is to obtain information about the influence of successive dilutions and succussions on the water structure of the solutions under study. We measured the heats of mixing of acid or basic solutions with such extremely diluted solutions, their electrical conductivity and pH, comparing with the analogous heats of mixing, electrical conductivity and pH of the solvent. We found some relevant exothermic excess heats of mixing, higher electrical conductivity and pH than those of the untreated solvent. The measurements show a good correlation between independent physico-chemical parameters. Care was taken to take into account the effect of chemical impurities deriving from the glass containers. Here we thus show that successive dilutions and succussions can permanently alter the physico-chemical properties of the water solvent. The nature of the phenomena here described still remains unexplained, nevertheless some significant experimental results were obtained.

solute-solvent interaction calorimetry pH sulutions conductivity aqueous solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Wallqvist and R. D. Mountain, Reviews in Computational Chemistry, 13 (1999) 183.Google Scholar
  2. 2.
    H. E. Stanley, S. V. Budyrev, M. Canpolat, M. Meyer, O. Mishima, M. R. Sadr-Lahijany, A. Scala and F. W. Starr, Physica A, 257 (1998) 213.CrossRefGoogle Scholar
  3. 3.
    H. E. Stanley, S. V. Budyrev, M. Canpolat, S. Havlin, O. Mishima, M. R. Sadr-Lahijany, A. Scala and F. W. Starr, Physica D, 133 (1999) 453.CrossRefGoogle Scholar
  4. 4.
    C. H. Cho, S. Singh and G. W. Robinson, Faraday Discuss., 103 (1996) 19.CrossRefGoogle Scholar
  5. 5.
    L. Rey, Physica A, 323 (2003) 67.CrossRefGoogle Scholar
  6. 6.
    O. Mishima and H. E. Stanley, Nature, 396 (1998) 329.CrossRefGoogle Scholar
  7. 7.
    S. Wourtersen, U. Emmerichs and H. J. Bakker, Science, 278 (1997) 658.CrossRefGoogle Scholar
  8. 8.
    J. K. Gregory, D. C. Clary, K. Liu, G. Brown and R. J. Saykally, Science, 275 (1997) 814.CrossRefGoogle Scholar
  9. 9.
    S. Woutersen and H. J. Bakker, Nature, 402 (1999) 507.CrossRefGoogle Scholar
  10. 10.
    S. V. Shevkunov and A. Vegiri, J. Chem. Phys., 11 (1999) 9303.CrossRefGoogle Scholar
  11. 11.
    J. Ropp, C. Lawrence, T. C. Farrar and J. L. Skinner, J. Am. Chem. Soc., 121 (2001).Google Scholar
  12. 12.
    J. R. Errington and P. G. Debenedetti, Nature, 409 (2001) 318.CrossRefGoogle Scholar
  13. 13.
    V. I. Lobyshev, R. E. Shikhlinskaya and B. D. Ryzhikov, J. Mol. Liquids, 82 (1999) 73.CrossRefGoogle Scholar
  14. 14.
    S. Samal and K. E. Geckeler, Chem. Commun., (2001) 2224.Google Scholar
  15. 15.
    V. Elia and M. Niccoli, Ann. New York Acad. Sci., 879 (1999) 241.CrossRefGoogle Scholar
  16. 16.
    V. Elia and M. Niccoli, J. Therm. Anal. Cal., 61 (2000) 527.CrossRefGoogle Scholar
  17. 17.
    S. Hahnemann, Organon, VI edizione, RED, 1985.Google Scholar
  18. 18.
    G. Castronuovo, V. Elia and F. Velleca, Curr. Top. Solution Chem., 2 (1997) 125.Google Scholar
  19. 19.
    W. G. McMillan Jr. and J. E. Mayer, J. Chem. Phys., 13 (1945) 276.CrossRefGoogle Scholar
  20. 20.
    H. L. Friedman and C. V. Krishnann, J. Solution Chem., 2 (1973) 119.CrossRefGoogle Scholar
  21. 21.
    F. Franks and M. D. Pedley, J. Chem. Soc. Faraday Trans. I, 79 (1983) 2249.CrossRefGoogle Scholar
  22. 22.
    J. J. Kozac, W. S. Knight and W. Kauzmannn, J. Chem. Phys., 48 (1968) 675.CrossRefGoogle Scholar
  23. 23.
    I. R. Tasker and R. H. Wood, J. Solution Chem., 11 (1982) 469.CrossRefGoogle Scholar
  24. 24.
    C. Jolicoeur and G. Lacroix, Canad. J. Chem., 54 (1976) 624.CrossRefGoogle Scholar
  25. 25.
    M. Fujisawa, M. Maeda, S. Takagi and T. Kimura, J. Therm. Anal. Cal., 69 (2002) 841.CrossRefGoogle Scholar
  26. 26 a).
    K. S. Pitzer and J. M. Simonson, J. Phys. Chem., 90 (1986) 3005. b) K. S. Pitzer, In Activity Coefficients in Electrolyte Solutions CRC Press, Boca Raton 1991.CrossRefGoogle Scholar
  27. 27.
    T. S. Light and S. L. Licht, Anal. Chem., 59 (1987) 2327.CrossRefGoogle Scholar
  28. 28.
    Varian SpectrA Manual.Google Scholar
  29. 29.
    Approved by Standard Methods Committee, 1997.Google Scholar
  30. 30.
    M. Tuckerman, K. Laasanem and M. Sperk, J. Chem. Phys., 103 (1995) 150.CrossRefGoogle Scholar
  31. 31.
    G. Barone, G. Castronuovo, V. Crescenzi, V. Elia and E. Rizzo, J. Solution Chem., 3 (1978) 197.Google Scholar
  32. 32.
    C. J. T. de Grotthus, Ann. Chim. LVIII, 1806, 54.Google Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  1. 1.Department of ChemistryUniversity 'Federico II' of Naples, Complesso Universitario di Monte S. AngeloNaplesItaly E-mail

Personalised recommendations