Journal of Sol-Gel Science and Technology

, Volume 31, Issue 1–3, pp 329–334 | Cite as

Electrodeposition of Dye-Doped Titania Thin Films

  • Ronen Shacham
  • David Avnir
  • Daniel Mandler


We extend our novel low-voltage electrochemical method for oxide thin film formation from sol-gel monomers to include entrapment of organic molecules within the films. We also describe an extension of the method to titania thin films, which are obtained from titanium tetra-n-propoxide in alcoholic solutions by applying potentials in the range of +2.0 to −1.4 V to indium tin oxide electrodes. The film thickness (ranging between 20–1000 nm) is controllable by changing either the potential or the duration of its application. We demonstrate that this electrochemical method provides a convenient way for entrapment of organic dopants within the film. Four dyes were used for that purpose: Basic Blue 41, methylene-blue, tris(2,2′-bipyridine)iron(II) and tris(2,2′-bipyridine)ruthenium(II).

electrodeposition sol-gel thin film titania dye entrapment and doping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Shacham, D. Avnir, and D. Mandler, Adv. Mater. 5(11), 384 (1999).Google Scholar
  2. 2.
    R. Shacham, D. Mandler, and D. Avnir, Chem. Eur. J. 10(8), 1936 (2004).Google Scholar
  3. 3.
    S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, Solid State Ionics 151(1–4), 19 (2002); X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, Chem. Mater. 13 (8), 2511 (2001).Google Scholar
  4. 4.
    Y. Ishikawa and Y. Matsumoto, Solid State Ionics 151(1–4), 213 (2002); G. H. A. Therese and P. V. Kamath, Chem. Mater. 12 (5), 1195 (2000).Google Scholar
  5. 5.
    X. L. Cui and Z. Y. Jiang, Progr. Chem. 14(5), 325 (2002).Google Scholar
  6. 6.
    A. M. Peiró, E. Brillas, J. Peral, X. Domènech, and J. A. Ayll´on, J. Mater. Chem. 12, 2769 (2002).Google Scholar
  7. 7.
    Z. A. Hamid, Anti-Corros. Method M 48(4), 235 (2001).Google Scholar
  8. 8.
    Y. Ishikawa and Y. Matsumoto, Electrochim. Acta 46(18), 2819 (2001).Google Scholar
  9. 9.
    S. Karuppuchamy, D. P. Amalnerkar, K. Yamaguchi, T. Yoshida, T. Sugiura, and H. Minoura, Chem. Lett 1, 78 (2001).Google Scholar
  10. 10.
    Y. Matsumoto, Y. Ishikawa, M. Nishida, and S. Ii, J. Phys. Chem. B. 104(17), 4204 (2000).Google Scholar
  11. 11.
    K. Kamada, M. Mukai, and Y. Matsumoto, Electrochim. Acta 47(20), 3309 (2002).Google Scholar
  12. 12.
    S. Lee, Y. Jun, K. J. Kim, and D. Kim, Sol Energ. Mat. Sol. C 65(1–4), 193 (2001).Google Scholar
  13. 13.
    I. Zhitomirsky, J. Eur. Ceram. Soc. 19(15), 2581 (1999).Google Scholar
  14. 14.
    I. Zhitomirsky, J. Mater. Sci. 34(10), 2441 (1999).Google Scholar
  15. 15.
    G. Zotti, G. Schiavon, and S. Zecchin, J. Electrochem. Soc. 146(2), 637 (1999).Google Scholar
  16. 16.
    I. Zhitomirsky, J. Eur. Ceram. Soc. 18(7), 849 (1998).Google Scholar
  17. 17.
    D. Aslanidis, J. Fransaer, and J. P. Celis, J. Electrochem. Soc. 144(7), 2352 (1997).Google Scholar
  18. 18.
    I. Zhitomirsky and L. Gal-Or, J. Eur. Ceram. Soc. 16(8), 819 (1996).Google Scholar
  19. 19.
    C. Natarajan and G. Nogami, J. Electrochem. Soc. 143(5), 1547 (1996).Google Scholar
  20. 20.
    I. Zhitomirsky, L. Gal-Or, A. Kohn, and H. W. Hennicke, J. Mater. Sci. 30(20), 5307 (1995).Google Scholar
  21. 21.
    I. Zhitomirsky, Mater. Lett. 33(5/6), 305 (1998).Google Scholar
  22. 22.
    L. Kavan, B. Oregan, A. Kay, and M. Gratzel, J. Electroanal. Chem. 346(1/2), 291 (1993).Google Scholar
  23. 23.
    P. Zeman and S. Takabayashi, Thin Solid Films 433(1/2), 57 (2003); D. B. Mitzi, Chem. Mater. 13(10), 3283 (2001); I. Ichinose, H. Senzu, and T. Kunitake, Chem. Mater. 9, 1296 (1997).Google Scholar
  24. 24.
    L. Bardos and H. Barankova, Surf. Coat. Tech. 146, 463 (2001).Google Scholar
  25. 25.
    A. K. Jamting, J. M. Bell, M. V. Swain, L. S. Wielunski, and R. Clissold, Thin Solid Films 332(1/2), 189 (1998).Google Scholar
  26. 26.
    F. Imai, K. Kunimori, T. Manabe, T. Kumagai, and H. Nozoye, Thin Solid Films 310(1/2), 184 (1997).Google Scholar
  27. 27.
    J. D. Grunwaldt, U. Gobel, and A. Baiker, Fresen. J. Anal. Chem. 358(1/2), 96 (1997).Google Scholar
  28. 28.
    A. W. Harris, B. P. Ludden, and D. C. W. Blaikley, Vacuum 43(1/2), 143 (1992).Google Scholar
  29. 29.
    C. Malitesta, A. Tepore, L. Valli, A. Genga, and T. Siciliano, Thin Solid Films 422(1/2), 112 (2002).Google Scholar
  30. 30.
    J. Huang, I. Ichinose, T. Kunitake, and A. Nakao, Langmuir 18(23), 9048 (2002).Google Scholar
  31. 31.
    H. H. Deng, H. Zhang, and Z. H. Lu, Chem. Phys. Lett. 363(5/6), 509 (2002).Google Scholar
  32. 32.
    H. M. Ding, M. K. Ram, and C. Nicolini, J. Nanosci. Nanotechno. 1(2), 207 (2001).Google Scholar
  33. 33.
    K. Muramatsu, M. Takahashi, K. Tajima, and K. Kobayashi, J. Colloid Interf. Sci. 242(1), 127 (2001).Google Scholar
  34. 34.
    J. Jin, L. S. Li, Y. Li, X. Chen, L. Jiang, Y. Y. Zhao, and T. J. Li, Thin Solid Films 379(1/2), 218 (2000).Google Scholar
  35. 35.
    I. Moriguchi, Y. Tsujigo, Y. Teraoka, and S. Kagawa, J. Phys. Chem. B 104(34), 8101 (2000).Google Scholar
  36. 36.
    X. S. Feng, S. Z. Kang, K. G. Liu, and J. Mu, Thin Solid Films 352(1/2), 223 (1999).Google Scholar
  37. 37.
    M. Oswald, V. Hessel, and R. Riedel, Thin Solid Films 339(1/2), 284 (1999).Google Scholar
  38. 38.
    J. H. Yang, Y. M. Chen, Y. B. Bai, M. Xian, D. F. Shen, Y. Q. Wang, S. R. Du, T. J. Li, Y. Wu, and W. Q. Xu, Supramol. Sci. 5(5/6), 599 (1998).Google Scholar
  39. 39.
    L. S. Li, J. Zhang, L. J. Wang, Y. M. Chen, Z. Hui, T. J. Li, L. F. Chi, and H. Fuchs, J. Vac. Sci. Technol. B 15(5), 1618 (1997).Google Scholar
  40. 40.
    L. S. Li, Z. Hui, Y. M. Chen, X. T. Zhang, X. G. Peng, Z. F. Liu, and T. J. Li, J. Colloid Interf. Sci. 192(2), 275 (1997).Google Scholar
  41. 41.
    I. Moriguchi, H. Maeda, Y. Teraoka, and S. Kagawa, Chem. Mater. 9(4), 1050 (1997).Google Scholar
  42. 42.
    L. S. Li, Y. M. Chen, S. H. Kan, X. T. Zhang, X. G. Peng, M. D. Liu, and T. J. Li, Thin Solid Films 285, 592 (1996).Google Scholar
  43. 43.
    S. Doherty and D. Fitzmaurice, J. Phys. Chem. US 100(25), 10732 (1996).Google Scholar
  44. 44.
    M. Sastry, S. Pal, D. V. Paranjape, and P. Ganguly, J. Electron Spectrosc. 67(1), 163 (1994).Google Scholar
  45. 45.
    D. V. Paranjape, M. Sastry, and P. Ganguly, Appl. Phys. Lett. 63(1), 18 (1993).Google Scholar
  46. 46.
    Y. Lin, G. S. Wu, X. Y. Yuan, T. Xie, and L. D. Zhang, J. Phys. Condens. Mat. 15(17), 2917 (2003).Google Scholar
  47. 47.
    S. J. Limmer, S. Seraji, Y. Wu, T. P. Chou, C. Nguyen, and G. Z. Cao, Adv. Funct. Mater. 12(1), 59 (2002).Google Scholar
  48. 48.
    X. Nie, A. Leyland, and A. Matthews, Surf. Coat. Tech. 125(1–3), 407 (2000); P. C. Innocenzi, M. Guglielmi, M. Gobbin and P. Colombo, J. Eur. Ceram. Soc. 10, 431 (1992); M. Atik, P. De-lima-Neto, M. A. Aegerter, and L. A. Avaca, J. Appl. Electrochem. 25, 142 (1995).Google Scholar
  49. 49.
    C. Legrand-Buscema, C. Malibert, and S. Bach, Thin Solid Films 418, 79 (2002).Google Scholar
  50. 50.
    J. He, I. Ichinose, S. Fujikawa, and A. Nakao, Chem. Mater. 14, 3493 (2002).Google Scholar
  51. 51.
    S. Karuppuchamy, D. P. Amalnerkar, K. Yamaguchi, T. Yoshida, T. Sugiura, and H. Minoura, Chem. Lett. 78 (2001).Google Scholar
  52. 52.
    T. P. Niesen, J. Bill, and F. Aldinger, Chem. Mater. 13, 1552 (2001).Google Scholar
  53. 53.
    C. Li and M. Z. Hoffman, J. Phys. Chem. A104(25), 5998 (2000); B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, Chem. Mater. 9, 2544 (1997).Google Scholar
  54. 54.
    E. Stathatos, T. Petrova, and P. Lianos, Langmuir 17, 5025 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ronen Shacham
    • 1
  • David Avnir
    • 1
  • Daniel Mandler
    • 1
  1. 1.Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations