Journal of Sol-Gel Science and Technology

, Volume 31, Issue 1–3, pp 267–271 | Cite as

Transparent Conducting Films in the Zn--Sn--O Tie Line

  • A. Kurz
  • M.A. Aegerter


Coatings were obtained on borosilicate glass and fused silica substrates with thicknesses of up to 230 nm from solutions with compositions along the Zn--Sn--O tie line. The preparation of the sols was accomplished by combinatorial chemistry with a robotic sample processor using different ZnII, SnII and SnIV salts and alkoxides, as well as salts of different doping agents (e.g. SbV, TaV, InIII) dissolved in various solvents and additives. The films were made by spin-coating followed by a thermal treatment in air, inert or reducing atmosphere at temperatures up to 1000°C. Except for a few cases, mixed crystalline phases of ZnO, SnO2 and ZnSnO3 or Zn2SnO4 are usually observed within the range 0.4 < [Zn]/([Zn] + [Sn]) < 0.75. Pure Zn2SnO4 and ZnSnO3 coatings exhibit good optical properties with a haze <0.2% and a transmission in the visible range >85%. In contrast to literature, results obtained for similar coatings by sputtering and pulsed laser deposition, all the sol–gel coatings showed a high resistivity of ρ > 3 Ωcm even after a forming gas treatment and/or doping.

transparent conducting oxides sol–gel ZnSnO3 Zn2SnO4 coating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Minami, Material Res. Soc. Bull. 25,38(2000).Google Scholar
  2. 2.
    D.L. Young, T.J. Coutts, and D.L. Williamson, Material Res. Soc. Symp. Proc. 666, F3.8.1 (2001Google Scholar
  3. 3.
    J. Perkins, J. del Cueto, J. Alleman, C. Warmsingh, B. Keyes, L. Gedvilas, P. Parilla, B. To, D. Readey, and D.S. Ginley, Thin Solid Films 411, 152 (2002).Google Scholar
  4. 4.
    C.M. Cardile, A.J. Koplick, R. McPherson, and B.O. West, J. Mater. Sci. Lett. 8, 370 (1989).Google Scholar
  5. 5.
    M. Jayachandran, B. Subramanian, M.J. Chockalingam, and A.S. Lakshmanan, Bull. Materials Sci. 17, 989 (1994).Google Scholar
  6. 6.
    T. Sei, Y. Nomura, and T. Tsuchiya, J. Non-Crystalline Solids 218, 135 (1997).Google Scholar
  7. 7.
    W.S. Dabney, N.E. Antolino, B.S. Luisi, A.P. Richard, and D.D. Edwards, Thin Solid Films, 411, 192 (2002).Google Scholar
  8. 8.
    I. Stambolova, K. Konstantinov, M. Khristova, and P. Peshev, Phys. Status Solidi a-Appl. Res. 167, R11 (1998).Google Scholar
  9. 9.
    G. Fu, H. Chen, Z.X. Chen, J.X. Zhang, and H. Kohler, Sensors and Actuators B-Chemical 81, 308 (2002).Google Scholar
  10. 10.
    E. Ruf, Deutsches Patentamt, DE4005135 A1, Deutschland, 1990, p. 1.Google Scholar
  11. 11.
    M.J. Hampden-Smith, T.A. Wark, and C.J. Brinker, Coord. Chem. Rev. 112,81(1992).Google Scholar
  12. 12.
    D.L. Young, Dissertation Thesis, Colorado School of Mines (Golden), 2000.Google Scholar
  13. 13.
    A.A. Al-Shahrani, S. Abboudy, and A.W. Brinkman, J. Phys. D-Appl. Phys. 29, 2165 (1996).Google Scholar
  14. 14.
    G.B. Palmer, K.R. Poeppelmeier, and T.O. Mason, J. Solid State Chem. 134, 192 (1997).Google Scholar
  15. 15.
    A.A. Al-Shahrani, Phys. Low-Dimens. Struct. 3/4,67(2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A. Kurz
    • 1
  • M.A. Aegerter
    • 1
  1. 1.Department of Coating TechnologyLeibniz-Institut fuer Neue Materialien–INMSaarbrueckenGermany

Personalised recommendations