Advertisement

Hydrolysis and Condensation Processes of Titanium iso-Propoxide Modified with Catechol: An NMR Study

  • Kentaro Egawa
  • Kentaro Suzaki
  • Yoshiyuki Sugahara
Article

Abstract

The hydrolysis and condensation processes of titanium iso-propoxide modified with catechol (C6H4(OH)2; H2cat) have been investigated by 1H, 13C and 17O nuclear magnetic resonance spectroscopy. The hydrolysis reactions of the modified titanium iso-propoxide in the system with Ti:tetrahydrofuran (THF):H2O = 1:20:x (x = 1, 2 and 5 in a molar ratio) are essentially completed in the initial stage (<1 h), and the condensation reactions also proceed significantly during this stage. Upon hydrolysis with H2O/Ti = 1, the iso-propoxy groups are selectively hydrolyzed and the catecholate groups remain bound to titanium. With H2O/Ti = 2 and 5, both the iso-propoxy and catecholate groups are hydrolyzed, and the hydrolysis of the iso-propoxy groups is relatively preferential. Approximately half the catecholate groups are stably bound to titanium, even after hydrolysis with H2O/Ti = 5.

sol-gel process titanium iso-propoxide catechol hydrolysis condensation chemical modification nuclear magnetic resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Science (Academic Press, Boston, 1990).Google Scholar
  2. 2.
    A.C. Pierre, Introduction to Sol-Gel Processing (Kluwer Academic Publishers, Boston, 1998).Google Scholar
  3. 3.
    B. O'Regan and M. Grätzel, Nature 353, 737 (1991).Google Scholar
  4. 4.
    A. Chemseddine and H.P. Boehm, J. Mol. Catal. 60, 295 (1990).Google Scholar
  5. 5.
    K. Kamiya, K. Tanimoto, and T. Yoko, J. Mater. Sci. Lett. 5, 402 (1986).Google Scholar
  6. 6.
    M. Kallala, C. Sanchez, and B. Cabane, Phys. Rev. E 48, 3692 (1993).Google Scholar
  7. 7.
    A. Chemseddine and T. Moritz, Eur. J. Inorg. Chem. 1999, 235 (1999).Google Scholar
  8. 8.
    L.-H. Lee and W.-C. Chen, Chem. Mater. 13, 1137 (2001).Google Scholar
  9. 9.
    M. Guglielmi and G. Carturan, J. Non-Cryst. Solids 100, 16 (1988).Google Scholar
  10. 10.
    A. Léaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 240 (1989).Google Scholar
  11. 11.
    A. Léaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 248 (1989).Google Scholar
  12. 12.
    S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1989).Google Scholar
  13. 13.
    S. Doeuff, M. Henry, and C. Sanchez, Mater. Res. Bull. 25, 1519 (1990).Google Scholar
  14. 14.
    S. Barboux-Doueff and C. Sanchez, Mater. Res. Bull. 29, 1 (1994).Google Scholar
  15. 15.
    D.D. Dunuwila, D. Gagliardi, and K.A. Berglund, Chem. Mater. 6, 1556 (1994).Google Scholar
  16. 16.
    C.G. Pierpont and C.W. Lange, Prog. Inorg. Chem. 41, 331 (1994).Google Scholar
  17. 17.
    G.H. Dahl and B.P. Block, Inorg. Chem. 5, 1394 (1966).Google Scholar
  18. 18.
    H. Honda, K. Suzaki, and Y. Sugahara, J. Sol-Gel Sci. Tech. 22, 133 (2001).Google Scholar
  19. 19.
    K. Egawa, K. Minami, and Y. Sugahara, Key Eng. Mater. 247, 401 (2003).Google Scholar
  20. 20.
    Q. Lu, D. Chen, and X. Jiao, J. Sol-Gel Sci. Tech. 25, 243 (2002).Google Scholar
  21. 21.
    Q. Lu, D. Chen, and X. Jiao, J. Alloys Comp. 358, 76 (2003).Google Scholar
  22. 22.
    C.W. Turner and K.J. Franklin, J. Non-Cryst. Solids 91, 402 (1987).Google Scholar
  23. 23.
    L.W. Kelts, N.J. Effinger, and S.M. Melpolder, J. Non-Cryst. Solids 83, 353 (1986).Google Scholar
  24. 24.
    R.A. Assink and B.D. Kay, J. Non-Cryst. Solids 99, 359 (1988).Google Scholar
  25. 25.
    Y. Sugahara, S. Okada, K. Kuroda, and C. Kato, J. Non-Cryst. Solids 139, 25 (1992).Google Scholar
  26. 26.
    Y. Sugahara, S. Okada, S. Sato, K. Kuroda, and C. Kato, J. Non-Cryst. Solids 167, 21 (1994).Google Scholar
  27. 27.
    Y. Sugahara, T. Inoue, and K. Kuroda, J. Mater. Chem. 7, 53 (1997).Google Scholar
  28. 28.
    H. Asaoka, Mater. Lett. 19, 207 (1994).Google Scholar
  29. 29.
    D.P. Birnie III and N.J. Bendzko, Mater. Chem. Phys. 59, 26 (1999).Google Scholar
  30. 30.
    F. Babonneau and J. Maquet, Polyhedron 19, 315 (2000).Google Scholar
  31. 31.
    V.W. Day, T.A. Eberspacher, W.G. Klemperer, C.W. Park, and F.S. Rosenberg, J. Am. Chem. Soc. 113, 8190 (1991).Google Scholar
  32. 32.
    J. Blanchard, S. Barboux-Doeuff, J. Maquet, and C. Sanchez, New J. Chem. 19, 929 (1995).Google Scholar
  33. 33.
    J. Blanchard, F. Ribot, C. Sanchez, P.-V. Bellot, and A. Trokiner, J. Non-Cryst. Solids 265, 83 (2000).Google Scholar
  34. 34.
    C. Alié and J.-P. Pirard, J. Non-Cryst. Solids 320, 21 (2003).Google Scholar
  35. 35.
    D.F. Shriver and M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds, 2nd edition (Wiley-Interscience, New York, 1986).Google Scholar
  36. 36.
    C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100, 65 (1988).Google Scholar
  37. 37.
    R.J. Errington, J. Ridland, W. Clegg, R.A. Coxall, and J.M. Sherwood, Polyhedron 17, 659 (1998).Google Scholar
  38. 38.
    K. Gigant, A. Rammal, and M. Henry, J. Am. Chem. Soc. 123, 11632 (2001).Google Scholar
  39. 39.
    M.P.J. Peeters, W.J.J. Wakelkamp, and A.P.M. Kentgens, J. Non-Cryst. Solids 189, 77 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Kentaro Egawa
    • 1
  • Kentaro Suzaki
    • 1
  • Yoshiyuki Sugahara
    • 1
  1. 1.Department of Applied Chemistry, School of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations