Journal of Sol-Gel Science and Technology

, Volume 29, Issue 1, pp 49–55 | Cite as

Size Effect on Crystal Structures of Barium Titanate Nanoparticles Prepared by a Sol-Gel Method

  • Yoshio Kobayashi
  • Ayako Nishikata
  • Tomokazu Tanase
  • Mikio Konno


Barium titanate nanoparticles were synthesized by the hydrolysis of complex alkoxide precursor that was prepared in a reflux of metallic barium and tetraethylorthotitanate in solvent. The hydrolysis was performed by the addition of water/ethanol solution to the precursor solution. As reflux time increased, particle sizes, which were measured with transmittance electromicroscopy, became smaller followed by sharpening of size distribution. As water concentration and benzene content in the hydrolysis increased, the particle size increased with crystallite size that was determined with X-ray diffractometry. No significant difference was observed between the particle and crystallite sizes up to 30 nm. Over the size of 30 nm, the particle size was larger than the crystallite size because of generation of polycrystallites. Annealing treatments in air at 400 and 1000°C also increased both the particle and crystallite sizes. The crystallite sizes estimated from the (111) peaks were smaller than those from (110) peaks in a range of sizes larger than 40 nm, which indicated that the critical crystallite size of transformation from cubic to tetragonal structures was approximately 40 nm.

barium titanate nanocrystallite sol-gel complex alkoxide critical crystallite size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.-S. Yen, H.I. Hsiang, and Y.-H. Chang, Jpn. J. Appl. Phys. 34, 6149 (1995).Google Scholar
  2. 2.
    D. McCauley, R.E. Newnham, and C.A. Randall, J. Am. Ceram. Soc. 81, 979 (1998).Google Scholar
  3. 3.
    K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989).Google Scholar
  4. 4.
    K. Ishikawa, K. Yoshikawa, and N. Okada, Phys. Rev. B 37, 5852 (1988).Google Scholar
  5. 5.
    S. Schlag, and H.-F. Eicke, Solid State Commun. 91, 883 (1994).Google Scholar
  6. 6.
    M.H. Frey and D.A. Payne, Phys. Rev. B 54, 3158 (1996).Google Scholar
  7. 7.
    S. Wada, T. Suzuki, and T. Noma, J. Mater. Res. 10, 306 (1995).Google Scholar
  8. 8.
    M.C.B. López, G. Fourlaris, and F.L. Riley, J. Eur. Ceram. Soc. 18, 2183 (1998).Google Scholar
  9. 9.
    V. Berbenni, A. Marini, and G. Bruni, Thermochim. Acta. 374, 151 (2001).Google Scholar
  10. 10.
    L.B. Kong, J. Ma, H. Huang, R.F. Zhang, and W.X. Que, J. Alloys Comp. 337, 226 (2002).Google Scholar
  11. 11.
    E. Brzozowski and M.S. Castro, Thermochim. Acta. 398, 123 (2003).Google Scholar
  12. 12.
    A.V. Prasadarao, M. Suresh, and S. Komarneni, Mater. Lett. 39, 359 (1999).Google Scholar
  13. 13.
    H.S. Potdar, S.B. Deshpande, and S.K. Date, Mater. Chem. Phys. 58, 121 (1999).Google Scholar
  14. 14.
    C.-T. Xia, E.-W. Shi, W.-Z. Zhong, and J.-K. Guo, J. Cryst. Growth 166, 961 (1996).Google Scholar
  15. 15.
    R. Asiaie, W. Zhu, S.A. Akbar, and P.K. Dutta, Chem. Mater. 8, 226 (1996).Google Scholar
  16. 16.
    G.J. Choi, H.S. Kim, and Y.S. Cho, Mater. Lett. 41, 122 (1999).Google Scholar
  17. 17.
    S. Urek and M. Drofenik, J. Eur. Ceram. Soc. 18, 279 (1998).Google Scholar
  18. 18.
    I. MacLaren and C.B. Ponton, J. Eur. Ceram. Soc. 20, 1267 (2000).Google Scholar
  19. 19.
    M.H. Frey and D.A. Payne, Chem. Mater. 7, 123 (1995).Google Scholar
  20. 20.
    J. Yang, J.M.F. Ferreira, W. Weng, and Y. Tang, Mater. Lett. 42, 257 (2000).Google Scholar
  21. 21.
    B. Lee and J. Zhang, Thin Solid Films 388, 107 (2001).Google Scholar
  22. 22.
    K.S. Mazdiyasni, R.T. Dolloff, and J.S. Smith II, J. Am. Ceram Soc. 52, 523 (1969).Google Scholar
  23. 23.
    T. Kasai, Y. Ozaki, and S. Yamamoto, Yogyo-Kyokai-Shi 95, 1000 (1987).Google Scholar
  24. 24.
    T. Tanase, A. Nishikata, Y. Iizuka, Y. Kobayashi, M. Konno, and T. Miwa, J. Ceram. Soc. Jpn. 110, 911 (2002).Google Scholar
  25. 25.
    S.-L. Chen, P. Dong, G.-H. Yang, and J.-J. Yang, Ind. Eng. Chem. Res. 35, 4487 (1996).Google Scholar
  26. 26.
    H.I. Hsiang and F.-S. Yen, J. Am. Ceram. Soc. 79, 1053 (1996).Google Scholar
  27. 27.
    X. Li and W.-H. Shih, J. Am. Ceram. Soc. 80, 2844 (1997).Google Scholar
  28. 28.
    W.-S. Cho and E. Hamada, J. Alloys Compounds 266, 118 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yoshio Kobayashi
    • 1
  • Ayako Nishikata
    • 1
  • Tomokazu Tanase
    • 1
  • Mikio Konno
    • 1
  1. 1.Department of Chemical Engineering, Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations