Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics

  • Bianka Prinz
  • Jeffrey Schultchen
  • Ralf Rydzewski
  • Caterina Holz
  • Mewes Boettner
  • Ulf Stahl
  • Christine Lang
Article

Abstract

We describe the introduction of the yeasts Saccharomyces cerevisiae and Pichia pastoris as eukaryotic hosts for the routine production of recombinant proteins for a structural genomics initiative. We have previously shown that human cDNAs can be efficiently expressed in both hosts using high throughput procedures. Expression clones derived from these screening procedures were grown in bioreactors and the over-expressed human proteins were purified, resulting in obtaining significant amounts suitable for structural analysis. We have also developed and optimized protocols enabling a high throughput, low cost fermentation and purification strategy for recombinant proteins for both S. cerevisiae and P. pastoris on a scale of 5 to 10 mg. Both batch and fed batch fermentation methods were applied to S. cerevisiae. The fed batch fermentations yielded a higher biomass production in all the strains as well as a higher productivity for some of the proteins. We carried out only fed batch fermentations on P. pastoris strains. Biomass was produced by cultivation on glycerol, followed by feeding methanol as carbon source to induce protein expression. The recombinant proteins were expressed as fusion proteins that include a N-terminal His-tag and a C-terminal Strep-tag. They were then purified by a two-step chromatographic procedure using metal-affinity chromatography and StrepTactin-affinity chromatography. This was followed by gel filtration for further purification and for buffer exchange. This three-step purification procedure is necessary to obtain highly purified proteins from yeast. The purified proteins have successfully been subjected to crystallization and biophysical analysis.

fermentation recombinant protein purification tagged human proteins yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, A. (2000) Nature 408, 130–132.CrossRefPubMedGoogle Scholar
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) J Mol. Biol. 215, 402–410.CrossRefGoogle Scholar
  3. Baneyx, F. (1999) Curr. Opin. Biotechnol. 10, 411–421.CrossRefPubMedGoogle Scholar
  4. Boettner, M., Prinz, B., Holz, C., Stahl, U. and Lang, C. (2002) J. Biotechnol. 99, 51–62.CrossRefPubMedGoogle Scholar
  5. Braun, P., Hu, Y., Shen, B., Halleck, A., Koundinya, M., Harlow, E. and LaBaer, J. (2002) Proc. Natl. Acad. Sci. USA 99, 2654–2659.CrossRefPubMedGoogle Scholar
  6. Cereghino, J.L. and Cregg, J.M. (2000) FEMS Microbiol. Rev. 24, 45–66.PubMedGoogle Scholar
  7. Curvers, S., Brixius, P., Klauser, T., Thommes, J., Weuster-Botz, D., Takors, R. and Wandrey, C. (2001) Biotechnol. Prog. 17, 495–502.CrossRefPubMedGoogle Scholar
  8. Dieckman, L., Gu, M., Stols, L., Donnelly, M.I. and Collart, F.R (2002) Protein Expr. Purif. 25, 1–7.CrossRefPubMedGoogle Scholar
  9. Fiore, C., Trézéguet, V., Roux, P., Le Saux, A., Noel, F., Schwimmer, C., Arlot, D., Dianoux, A.C., Lauquin, G. and Brandolin, G. (2000) Protein Expr. Purif. 19, 57–65.CrossRefPubMedGoogle Scholar
  10. Gill, S.C. and von Hippel, P.H. (1989) Anal. Biochem. 182, 319–326CrossRefPubMedGoogle Scholar
  11. Guarna, M.M., Lesnicki, G.J., Tam, B.M., Robinson, C.Z., Hasenwinkle, D., Boraston, A., Jervis, E., MacGillivray R.T.A., Turner, R.F.B. and Kilburn, D.G. (1997) Biotechnol. Bioeng. 56, 279–285.CrossRefGoogle Scholar
  12. Hammarström, M., Hellgren, N., van den Berg, S., Berglund, H. and Härd, T. (2002) Protein Sci. 11, 313–321.CrossRefPubMedGoogle Scholar
  13. Hanning, G. and Makrides, S.C. (1998) Trends Biotechnol. 16, 54–60.CrossRefPubMedGoogle Scholar
  14. Heinemann, U., Frevert, J., Hofmann, K.P., Illing, G., Maurer, C., Oschkinat, H. and Saenger, W. (2000) Prog. Biophys. Mol. Biol. 73, 347–362.CrossRefPubMedGoogle Scholar
  15. Heinemann, U., Illing, G. and Oschkinat, H. (2001) Curr. Opin. Biotechnol. 12, 348–354.CrossRefPubMedGoogle Scholar
  16. Heinemann, U., Büssow, K., Müller, U. and Umbach, P. (2003) Acc. Chem. Res. 36, 157–163.CrossRefPubMedGoogle Scholar
  17. Hellwig, S., Emde, F., Raven, N.P., Henke, M., van der Logt, P. and Fischer, R. (2001) Biotechnol. Bioeng. 74, 344–352.CrossRefPubMedGoogle Scholar
  18. Hensing, M.C.M., Rouwenhorst, R.J., Heijnen J.J., van Dijken, J.P. and Pronk, J.T. (1995) Antonie van Leeuwenhoek 67, 261–279.CrossRefPubMedGoogle Scholar
  19. Holz, C., Hesse, O., Bolotina, N., Stahl, U. and Lang, C. (2002) Protein Expr. Purif. 25, 372–378.CrossRefPubMedGoogle Scholar
  20. Holz, C., Prinz, B., Bolotina, N., Sievert, V., Büssow, C., Simon, B., Stahl, U. and Lang, C. (2003) J. Struct. Funct. Genomics, 4, 97–108.CrossRefPubMedGoogle Scholar
  21. Jin, H.J. and Yang, Y.D. (2002) Protein Expr. Purif. 25, 149–159.CrossRefPubMedGoogle Scholar
  22. Kasher, M.S., Wakulchik, M., Cook, J.A. and Smith, M.C. (1993) Biotechniques 14, 630–641.PubMedGoogle Scholar
  23. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. and Lander, E. (2003) Nature 423, 241–254.CrossRefPubMedGoogle Scholar
  24. Lang, C. and Looman, A.C. (1995) Appl. Microbiol. Biotechnol. 44, 147–156.PubMedGoogle Scholar
  25. Lesley, S.A. (2001) Protein Expr. Purif. 22, 159–164.CrossRefPubMedGoogle Scholar
  26. Li, Z., Xiong, F., Lin, Q., d'Anjou, M., Daugulis, A.J., Yang, D.S. and Hew, C.L. (2001) Protein Expr. Purif. 21, 438–445.CrossRefPubMedGoogle Scholar
  27. Mach, H., Middaugh, R. and Lewis, R. (1992) Anal. Biochem. 200, 74–80.CrossRefPubMedGoogle Scholar
  28. Makrides, S.C. (1996) Microbiol. Rev. 60, 512–538.PubMedGoogle Scholar
  29. Mendoza-Vega, O. and Brown, C.H. (1994) J. Biotechnol. 32, 249–259.CrossRefPubMedGoogle Scholar
  30. Prinz, B., Stahl, U. and Lang, C. (2003) Int. Microbiol. 6, 49–55.PubMedGoogle Scholar
  31. Quevillon-Cheruel, S., Collinet, B., Zhou, C.Z., Minard, P., Blondeau, K., Henkes, G., Aufrere, R., Coutant, J., Guittet, E., Lewit-Bentley, A., Leulliot, N., Ascone, I., Sorel, I., Savarin, P., de La Sierra Gallay, I.L., de la Torre, F., Poupon, A., Fourme, R., Janin, J. and van Tilbeurgh, H. (2003) J. Synchrotron Radiat. 10, 4–8.CrossRefPubMedGoogle Scholar
  32. Shi, X., Karkut, T., Chamankhah, M., Alting-Mees, M., Hemmingsen, S.M. and Hegedus, D. (2003) Protein Expr. Purif. 28, 321–330.CrossRefPubMedGoogle Scholar
  33. Stratton, J., Chiruvolu, V. and Meagher, M. (1998) In Methods in Molecular Biology, Vol. 103: Pichia Protocols (Eds., Higgins, D.R. and Cregg, J.M.), Humana Press, Totowa, NJ, pp. 107–120.Google Scholar
  34. van Hoek, P., de Hulster, E., van Dijken, J.P. and Pronk, J.T. (2000) Biotechnol. Bioeng. 68, 517–523.CrossRefPubMedGoogle Scholar
  35. Yelin, R. and Schuldiner, S. (2001) Biochim. Biophys. Acta 1510, 426–441.PubMedGoogle Scholar
  36. Zhang, W., Bevins, M.A., Plantz, B.A., Smith, L.A. and Meagher, M.M. (2000) Biotechnol. Bioeng. 70, 1–8.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Bianka Prinz
    • 1
    • 2
  • Jeffrey Schultchen
    • 2
  • Ralf Rydzewski
    • 2
  • Caterina Holz
    • 2
  • Mewes Boettner
    • 2
  • Ulf Stahl
    • 1
  • Christine Lang
    • 1
    • 2
  1. 1.Institute for Biotechnology, Department of Microbiology and GeneticsBerlin University of TechnologyBerlinGermany
  2. 2.ProteinstrukturfabrikBerlinGermany

Personalised recommendations