Advertisement

Preparation of Escherichia coli cell extract for highly productive cell-free protein expression

  • Takanori Kigawa
  • Takashi Yabuki
  • Natsuko Matsuda
  • Takayoshi Matsuda
  • Rie Nakajima
  • Akiko Tanaka
  • Shigeyuki Yokoyama
Article

Abstract

As structural genomics and proteomics research has become popular, the importance of cell-free protein synthesis systems has been realized for high-throughput expression. Our group has established a high-throughput pipeline for protein sample preparation for structural genomics and proteomics by using cell-free protein synthesis. Among the many procedures for cell-free protein synthesis, the preparation of the cell extract is a crucial step to establish a highly efficient and reproducible workflow. In this article, we describe a detailed protocol for E. coli cell extract preparation for cell-free protein synthesis, which we have developed and routinely use. The cell extract prepared according to this protocol is used for many of our cell-free synthesis applications, including high-throughput protein expression using PCR-amplified templates and large-scale protein production for structure determinations.

abbreviations

2-mEt — 2-mercaptoethanol; AcCoA — acetyl coenzyme A; BL21 CP — BL21 codon-plus RIL; CAT — chloramphenicol acetyl transferase; CK — creatine kinase; Cm — chloramphenicol; DEPC — diethylpyrocarbonate; CP — creatine phosphate; DTNB — 5,5′-dithiobis-2-nitrobenzoic acid; DTT — dithiothreitol; Folinic acid — L(−)-5-formyl-5,6,7,8-tetrahydrofolic acid; KGlu — polyethyleneglycol; PEG — potassium glutamate; PEP — phospho-enolpyruvate; PK — pyruvate kinase.

cell-free protein synthesis high-throughput structural genomics structural proteomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busso, D., Kim, R. and Kim, S.H. (2003) J. Biochem. Biophys. Meth. 55, 233–240.CrossRefPubMedGoogle Scholar
  2. Davanloo, P., Rosenberg, A.H., Dunn, J.J. and Studier, F.W. (1984) Proc. Natl. Acad. Sci. USA 81, 2035–2039.PubMedGoogle Scholar
  3. Grodberg, J. and Dunn, J.J. (1988) J. Bacteriol. 170, 1245–1253.PubMedGoogle Scholar
  4. Hirao, I., Ohtsuki, T., Fujiwara, T., Mitsui, T., Yokogawa, T., Okuni, T., Nakayama, H., Takio, K., Yabuki, T., Kigawa, T., Kodama, K., Nishikawa, K. and Yokoyama, S. (2002) Nat. Biotechnol. 20, 177–182.CrossRefPubMedGoogle Scholar
  5. Kiga, D., Sakamoto, K., Kodama, K., Kigawa, T., Matsuda, T., Yabuki, T., Shirouzu, M., Harada, Y., Nakayama, H., Takio, K., Hasegawa, Y., Endo, Y., Hirao, I. and Yokoyama, S. (2002) Proc. Natl. Acad. Sci. USA 99, 9715–9720.CrossRefPubMedGoogle Scholar
  6. Kigawa, T., Muto, Y. and Yokoyama, S. (1995) J. Biomol. NMR 6, 129–134.CrossRefPubMedGoogle Scholar
  7. Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T. and Yokoyama, S. (1999) FEBS Lett. 442, 15–19.CrossRefPubMedGoogle Scholar
  8. Kigawa, T., Yamaguchi-Nunokawa, E., Kodama, K., Matsuda, T., Yabuki, T., Matsuda, N., Ishitani, R., Nureki, O. and Yokoyama, S. (2002) J. Struct. Funct. Genom. 2, 29–35.CrossRefGoogle Scholar
  9. Kigawa, T. and Yokoyama, S. (1991) J. Biochem (Tokyo) 110, 166–168.Google Scholar
  10. Kim, D.M. and Choi, C.Y. (1996) Biotechnol. Prog. 12, 645–649.CrossRefPubMedGoogle Scholar
  11. Kim, D.M., Kigawa, T., Choi, C.Y. and Yokoyama, S. (1996) Eur. J. Biochem. 239, 881–886.CrossRefPubMedGoogle Scholar
  12. Kim, D.M. and Swartz, J.R. (1999) Biotechnol. Bioeng. 66, 180–188.CrossRefPubMedGoogle Scholar
  13. Kim, D.M. and Swartz, J.R. (2000) Biotechnol. Prog. 16, 385–390.CrossRefPubMedGoogle Scholar
  14. Kim, D.M. and Swartz, J.R. (2001) Biotechnol. Bioeng. 74, 309–316.CrossRefPubMedGoogle Scholar
  15. Madin, K., Sawasaki, T., Ogasawara, T. and Endo, Y. (2000) Proc. Natl. Acad. Sci. USA 97, 559–564.CrossRefPubMedGoogle Scholar
  16. Pratt, J.M. (1984) In Transcription and Translation (Eds., Hames, B.D. and Higgins, S.J.), IRL Press, Oxford, UK and Washington, DC, pp. 179–209.Google Scholar
  17. Sawasaki, T., Hasegawa, Y., Tsuchimochi, M., Kamura, N., Ogasawara, T., Kuroita, T. and Endo, Y. (2002a) FEBS Lett. 514, 102–105.CrossRefPubMedGoogle Scholar
  18. Sawasaki, T., Ogasawara, T., Morishita, R. and Endo, Y. (2002b) Proc. Natl. Acad. Sci. USA 99, 14652–14657.CrossRefPubMedGoogle Scholar
  19. Shaw, W.V. (1975) Methods Enzymol., 43 737–755.PubMedGoogle Scholar
  20. Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K. and Ueda, T. (2001) Nat. Biotechnol. 19, 751–755.CrossRefPubMedGoogle Scholar
  21. Spirin, A.S., Baranov, V.I., Ryabova, L.A., Ovodov, S.Y. and Alakhov, Y.B. (1988) Science 242, 1162–1164.PubMedGoogle Scholar
  22. Yabuki, T., Kigawa, T., Dohmae, N., Takio, K., Terada, T., Ito, Y., Laue, E.D., Cooper, J.A., Kainosho, M. and Yokoyama, S. (1998) J. Biomol. NMR 11, 295–306.CrossRefPubMedGoogle Scholar
  23. Yokoyama, S., Hirota, H., Kigawa, T., Yabuki, T., Shirouzu, M., Terada, T., Ito, Y., Matsuo, Y., Kuroda, Y., Nishimura, Y., Kyogoku, Y., Miki, K., Masui, R. and Kuramitsu, S. (2000) Nat. Struct. Biol. 7 Suppl. 943–945.CrossRefPubMedGoogle Scholar
  24. Zawadzki, V. and Gross, H.J. (1991) Nucleic Acids Res. 19, 1948.PubMedGoogle Scholar
  25. Zubay, G. (1973) Ann. Rev. Genet. 7, 267–287.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Takanori Kigawa
    • 1
  • Takashi Yabuki
    • 1
  • Natsuko Matsuda
    • 1
  • Takayoshi Matsuda
    • 1
  • Rie Nakajima
    • 1
  • Akiko Tanaka
    • 1
  • Shigeyuki Yokoyama
    • 1
    • 2
    • 3
  1. 1.Protein Research GroupRIKEN Genomic Sciences CenterYokohamaJapan
  2. 2.Cellular Signaling Laboratory and Structurome Research GroupRIKEN Harima Institute at SPring-8HyogoJapan
  3. 3.Department of Biophysics and Biochemistry, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations