Journal of Structural and Functional Genomics

, Volume 5, Issue 3, pp 205–215

NMR for structural proteomics of Thermotoga maritima: Screening and structure determination

  • Wolfgang Peti
  • Touraj Etezady-Esfarjani
  • Torsten Herrmann
  • Heath E. Klock
  • Scott A. Lesley
  • Kurt Wüthrich
Article

DOI: 10.1023/B:JSFG.0000029055.84242.9f

Cite this article as:
Peti, W., Etezady-Esfarjani, T., Herrmann, T. et al. J Struct Func Genom (2004) 5: 205. doi:10.1023/B:JSFG.0000029055.84242.9f

Abstract

This paper describes the NMR screening of 141 small (<15 kDa) recombinant Thermotoga maritima proteins for globular folding. The experimental data shows that ∼25% of the screened proteins are folded under our screening conditions, which makes this procedure an important step for selecting those proteins that are suitable for structure determination. A comparison of screening based either on 1D 1H NMR with unlabeled proteins or on 2D [1H,15N]-COSY with uniformly 15N-labeled proteins is presented, and a comprehensive analysis of the 1D 1H NMR screening data is described. As an illustration of the utility of these methods to structural proteomics, the NMR structure determination of TM1492 (ribosomal protein L29) is presented. This 66-residue protein consists of a N-terminal 310-helix and two long α-helices connected by a tight turn centered about glycine 35, where conserved leucine and isoleucine residues in the two α-helices form a small hydrophobic core.

50S ribosomal protein L29 NMR screening NMR structure determination structural proteomics Thermotoga maritima TM1492 

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Wolfgang Peti
    • 1
  • Touraj Etezady-Esfarjani
    • 1
  • Torsten Herrmann
    • 1
  • Heath E. Klock
    • 2
  • Scott A. Lesley
    • 2
  • Kurt Wüthrich
    • 1
  1. 1.The Scripps Research Institute, Department of Molecular Biology and Joint Center of Structural GenomicsLa JollaUSA
  2. 2.Genomics Institute of the Novartis Research FoundationSan DiegoUSA

Personalised recommendations