Journal of Mathematical Sciences

, Volume 125, Issue 2, pp 173–184 | Cite as

Can a Game be Quantum?

  • A. A. Grib
  • G. N. Parfionov


A game in which acts of the participants do not have an adequate description in terms of the Boolean logic and classical theory of probabilities is considered. A model of the game interaction is constructed on the basis of a nondistributive orthocomplemented lattice. Mixed strategies of the participants are calculated using probability amplitudes according to the rules of quantum mechanics. A scheme of quantization of the payoff function is proposed and an algorithm for the search of the Nash equilibrium is given. It is shown that in contrast with the classical case, in the quantum situation a discrete set of equilibria is possible. Bibliography: 19 titles.


Quantum Mechanic Nash Equilibrium Nash Payoff Classical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Deutsch, Quantum Theory of Probability and Decisions, Proc. R. Soc. Lond. A. (1999) (quant-ph/9906015).Google Scholar
  2. 2.
    J. Finkelstein, Quantum Probability from Decisions Theory? SJSU-99-20 (1999).Google Scholar
  3. 3.
    I. Polley, Reducing the Statistical Axiom, Phys.Dept.Oldenburg Univ., D-26111 (1999).Google Scholar
  4. 4.
    E. W. Piotrowski, Quantum English Auctions, arXiv:quant-ph/0108017v1 3Aug (2001).Google Scholar
  5. 5.
    A. A. Grib, “Breaking the Bell inequalities and the problem of measurement in the quantum theory,” Lectures for young scientists, JINR, Dubna (1992).Google Scholar
  6. 6.
    A. A. Grib, Jr., and W. A. Rodrigues, Nonlocality in Quantum Physics, Kluwer Academic, Plenum Publishers (1999).Google Scholar
  7. 7.
    A. A. Grib and R. R. Zapatrin, Int. J. Theor. Phys., 29(2), 113 (1990).Google Scholar
  8. 8.
    A. A. Grib and R. R. Zapatrin, Int. J. Theor. Phys. 30(7), 949 (1991).Google Scholar
  9. 9.
    J. Eisert et al, Phys. Rev. Lett., 83, 3077 (1999).Google Scholar
  10. 10.
    A. K. Ekert, Phys. Rev. Lett., 67, 661 (1999).Google Scholar
  11. 11.
    L. Marinatto and T. Weber, Phys. Lett. A, 272, 291 (2000).Google Scholar
  12. 12.
    H. Moulin, Théorie des Jeux pour L'économie et la Politique, Hermann, Paris (1981).Google Scholar
  13. 13.
    G. Owen, Game Theory, Philadelphia, London, Toronto (1968).Google Scholar
  14. 14.
    J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton Univ. Press (1953).Google Scholar
  15. 15.
    H. von Stackelberg, Marktform und Gleiwicht, Springer (1934).Google Scholar
  16. 16.
    J. D. Kemeny and G. L. Thompson, “The effect of psychological attitudes on the outcomes of games,” Contributions Theory Games, 3, 273–298 (1957).Google Scholar
  17. 17.
    G. D. Birkhoff, Lattice Theory, AMS Colloc.Publ., 25 (1993).Google Scholar
  18. 18.
    G. Grätzer, Lattice Theory, Freeman & Co. (1971).Google Scholar
  19. 19.
    N. N. Vorob'ev, Foundations of Game Theory. Noncooperative Games, Birkhäuser Verlag (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2005

Authors and Affiliations

  • A. A. Grib
    • 1
  • G. N. Parfionov
    • 2
  1. 1.Friedman Laboratory of Theoretical PhysicsU.S.A
  2. 2.St.Petersburg University for Economics and FinancesU.S.A

Personalised recommendations